400G ZR & ZR+ – New Generation of Solutions for Longer-reach Optical Communications

400G

400G ZR and ZR+ coherent pluggable optics have become new solutions for high-density networks with data rates from 100G to 400G featuring low power and small space. Let’s see how the latest generation of 400G ZR and 400G ZR+ optics extends the economic benefits to meet the requirements of network operators, maximizes fiber utilization, and reduces the cost of data transport.

400G ZR & ZR+: Definitions

What Is 400G ZR?

400G ZR coherent optical modules are compliant with the OIF-400ZR standard, ensuring industry-wide interoperability. They provide 400Gbps of optical bandwidth over a single optical wavelength using DWDM (dense wavelength division multiplexing) and higher-order modulation such as 16 QAM. Implemented predominantly in the QSFP-DD form factor, 400G ZR will serve the specific requirement for massively parallel data center interconnect of 400GbE with distances of 80-120km. To learn more about 400G transceivers: How Many 400G Transceiver Types Are in the Market?

Overview of 400G ZR+

ZR+ is a range of coherent pluggable solutions with line capacities up to 400Gbps and reaches well beyond 80km supporting various application requirements. The specific operational and performance requirements of different applications will determine what types of 400G ZR+ coherent plugs will be used in networks. Some applications will take advantage of interoperable, multi-vendor ecosystems defined by standards body or MSA specifications and others will rely on the maximum performance achievable in the constraints of a pluggable module package. Four categories of 400G ZR+ applications will be explained in the following part.

400G ZR & ZR+: Applications

400G ZR – Application Scenario

The arrival of 400G ZR modules has ushered in a new era of DWDM technology marked by open, standards based, and pluggable DWDM optics, enabling true IP-over-DWDM. 400G ZR is often applied for point-to-point DCI (up to 80km), making the task of interconnecting data centers as simple as connecting switches inside a data center (as shown below).

Figure 1: 400G ZR Applied in Single-span DCI

Four Primary Deployment Applications for 400G ZR+

Extended-reach P2P Packet

One definition of ZR+ is a straightforward extension of 400G ZR transcoded mappings of Ethernet with a higher performance FEC to support longer reaches. In this case, 400G ZR+ modules are narrowly defined as supporting a single-carrier 400Gbps optical line rate and transporting 400GbE, 2x 200GbE or 4x 100GbE client signals for point-to-point reaches (up to around 500km). This solution is specifically dedicated to packet transport applications and destined for router platforms.

Multi-span Metro OTN

Another definition of ZR+ is the inclusion of support for OTN, such as client mapping and multiplexing into FlexO interfaces. This coherent pluggable solution is intended to support the additional requirements of OTN networks, carry both Ethernet and OTN clients, and address transport in multi-span ROADM networks. This category of 400G ZR+ is required where demarcation is important to operators, and is destined primarily for multi-span metro ROADM networks.

Figure 2: 400G ZR+ Applied in Multi-span Metro OTN

Multi-span Metro Packet

The third definition of ZR+ is support for extended reach Ethernet or packet transcoded solution that is further optimized for critical performance such as latency. This 400G ZR+ coherent pluggable with high performance FEC and sophisticated coding algorithms supports the longest reach over 1000km multi-span metro packet transport.

Figure 3: 400G ZR+ Applied in Multi-span Metro Packet

Multi-span Metro Regional OTN

The fourth definition of ZR+ supports both Ethernet and OTN clients. This coherent pluggable also leverages high performance FEC and PCS, along with tunable optical filters and amplifiers for maximum reach. It supports a rich feature set of OTN network functions for deployment over both fixed and flex-grid line systems. This category of 400G ZR+ provides solutions with higher performance to address a much wider range of metro/regional packet networking requirements.

400G ZR & ZR+: What Makes Them Suitable for Longer-reach Transmission in Data Center?

Coherent Technology Adopted by 400G ZR & ZR+

Coherent technology uses the three degrees of freedom (amplitude, phase and polarization of light) to focus more data on the wave that is being transmitted. In this way, coherent optics can transport more data over a single fiber for greater distances using higher order modulation techniques, which results in better spectral efficiency. 400G ZR and ZR+ is a leap forward in the application of coherent technology. With higher-order modulation and DWDM unlocking high bandwidth, 400G ZR and ZR+ modules can reduce cost and complexity for high-level data center interconnects.

Importance of 400G ZR & ZR+

400G ZR and 400G ZR+ coherent pluggable optics take implementation challenges to the next level by adding some of the elements for high-performance solutions while pushing component design for low-power, pluggability, and modularity.

Conclusion

Although there are still many challenges to making 400G ZR and 400G ZR+ transceiver modules that fit into the small size and power budget of OSFP or QSFP-DD packages and also achieving interoperation as well the costs and volume targets. With 400Gbps high optical bandwidth and low power consumption, 400G ZR & ZR+ may very well be the new generation in longer-reach optical communications.

Original Source: 400G ZR & ZR+ – New Generation of Solutions for Longer-reach Optical Communications

400G OSFP Transceiver Types Overview

400G

OSFP stands for Octal Small Form-factor Pluggable, which consists of 8 electrical lanes, running at 50Gb/s each, for a total of the bandwidth of 400Gb/s. This post will give an introduction of 400G OSFP transceiver types, the fiber connections, and some QAs about OSFP.

400G OSFP Transceiver Types

Below lists some current main 400G OSFP transceiver types: OSFP SR8, OSFP DR4, OSFP DR4+, OSFP FR4, OSFP 2*FR4, and OSFP LR4, which summarize OSFP transceiver according to the two transmission types (over multimode fiber and single-mode fiber) they support.

Fibers Connections for 400G OSFP Transceivers

400G OSFP SR8

Figure 1 OSFP SR8 to OSFP SR8.jpg
  • 400G OSFP SR8 to 2× 200G SR4 over MTP-16 to 2× MPO-8 breakout cable.
Figure 2 OSFP SR8 to 2 200G SR4.jpg
  • 400G OSFP SR8 to 8× 50G SFP via MTP-16 to 8× LC duplex breakout cable with up to 100m.
Figure 3 OSFP SR8 to 8 50G SFP.jpg

400G OSFP DR4

  • 400G OSFP DR4 to 400G OSFP DR4 over an MTP-12/MPO-12 cable.Figure 1 OSFP SR8 to OSFP SR8.jpg
  • 400G OSFP DR4 to 4× 100G DR4 over MTP-12/MPO-12 to 4× LC duplex breakout cable.
Figure 4 OSFP DR4 to 4 100G DR.jpg

400G OSFP XDR4/DR4+

  • 400G OSFP DR4+ to 400G OSFP DR4+ over an MTP-12/MPO-12 cable.
  • 400G OSFP DR4+ to 4× 100G DR over MTP-12/MPO-12 to 4× LC duplex breakout cable.
Figure 5 OSFP DR4+ to 4 100G DR.jpg

400G OSFP FR4

400G OSFP FR4 to 400G OSFP FR4 over duplex LC cable.

Figure 6 OSFP FR4 to OSFP FR4.jpg

400G OSFP 2FR4

OSFP 2FR4 can break out to 2× 200G and interop with 2× 200G-FR4 QSFP transceivers via 2× CS to 2× LC duplex cable.

400G OSFP Transceivers: Q&A

Q: What does “SR8”, “DR4”, “XDR4”, “FR4”, and “LR4” mean?

A: “SR” refers to short range, and “8” implies there are 8 optical channels. “DR” refers to 500m reach using single-mode fiber, and “4” implies there are 4 optical channels. “XDR4” is short for “eXtended reach DR4”. And “LR” refers to 10km reach using single-mode fiber.

Q: Can I plug an OSFP transceiver module into a QSFP-DD port?

A: No. QSFP-DD and OSFP are totally different form factors. For more information about QSFP-DD transceivers, you can refer to 400G QSFP-DD Transceiver Types Overview. You can use only one kind of form factor in the corresponding system. E.g., if you have an OSFP system, OSFP transceivers and cables must be used.

Q: Can I plug a 100G QSFP28 module into an OSFP port?

A: Yes. A QSFP28 module can be inserted into an OSFP port but with an adapter. When using a QSFP28 module in an OSFP port, the OSFP port must be configured for a data rate of 100G instead of 400G.

Q: What other breakout options are possible apart from using OSFP modules mentioned above?

A: OSFP 400G DACs & AOCs are possible for breakout 400G connections. See 400G Direct Attach Cables (DAC & AOC) Overview for more information about 400G DACs & AOCs.

Original Source: 400G OSFP Transceiver Types Overview

Cisco SFP Datasheet

As a world renowned enterprise in communication and information technology industry, Cisco’s networking products have been gained worldwide reputation among these years. Fiber optical transceiver is a networking technology used within buildings in local-area networks and across great distances in wide-area networks. 1000BASE SFP modules with various protocols offer optimized 1G Ethernet connectivity for diverse networking environments. Cisco SFP modules include 1000BASE-T SFP, 1000BASE-SX SFP, 1000BASE-LX/LH SFP, 1000BASE-EX SFP, etc. This passage would put emphasis on Cisco SFP modules and comprehensively present the Cisco SFP datasheet.

Overview on Cisco 1000BASE SFP Modules

Cisco’s industry-standard SFP is a hot-swappable input/output device that plugs into a Gigabit Ethernet port/slot, linking the port with the fiber optic network. SFPs can be used and interchanged on a wide variety of Cisco products and can be intermixed in combinations of IEEE 802.3z- compliant 1000BaseSX, 1000BaseLX/LH, or 1000BaseZX interfaces on a port-by-port basis. All of the Cisco 1000BASE SFP modules were certified and tested for superior performance, quality, and reliability. So the customers could rest assured to plug these hot-swappable input or output device into the 1 Gigabit Ethernet ports.

Cisco SFP 1G

Nowadays, they have been widely applied to data center, high-performance computing networks, enterprise core and distribution layers, and service provider applications. Basically, there are totally 12 form factors of Cisco 1000BASE SFP modules. Owing to time and space limitation, we would briefly introduce Cisco 1000BASE-SX SFP, Cisco 1000BASE-LX/LH SFP, Cisco 1000BASE-EX SFP, and Cisco 1000BASE-ZX SFP.

Cisco 1000BASE-SX SFP Datasheet

The Cisco 1000BASE-SX SFP is fully compatible with the IEEE 802.3z 1000BASE-SX standard. It operates on legacy 50 μm multimode fiber links up to 550 m and on 62.5 μm Fiber Distributed Data Interface (FDDI)-grade multimode fibers up to 220 m. This Cisco 1000BASE-SX SFP module can support up to 1 km over laser-optimized 50 μm multimode fiber cable. This Cisco multimode SFP module can be used to connect the 1000BASE SFP port on Cisco switch. The Cisco 1000BASE-SX SFP datasheet is shown as below:

Form Type SFP-GE-S-2
Max Data Rate 1000Mbps
Wavelength 1310nm
Max Transmission Distance 2km
Interface LC duplex
Fiber Type MMF
DOM Support Yes
TX Power -9.5~-3dBm
Receiver Sensitivity < -17dBm
Operating Temperature 0 to 70°C (32 to 158°F)

Cisco 1000BASE-LX/LH SFP Datasheet

The Cisco 1000BASE-LX/LH SFP is compatible with the IEEE 802.3z 1000BASE-LX standard. It operates on standard single-mode fiber-optic link spans of up to 10 km and up to 550 m on any multimode fibers. When used over legacy multimode fiber type, the transmitter should be coupled through a mode conditioning patch cable. This Cisco singlemode SFP datasheet is shown as below:

Form Type GLC-LH-SM
Max Data Rate 1000Mbps
Wavelength 1310nm
Max Transmission Distance 10km
Interface LC duplex
Fiber Type SMF
DOM Support Yes
TX Power -9.5~-3dBm
Receiver Sensitivity < -23dBm
Operating Temperature 0 to 70°C (32 to 158°F)

Cisco 1000BASE-EX SFP Datasheet

The Cisco 1000BASE-EX SFP operates on standard singlemode fiber optic link spans of up to 40 km in length. A 5-dB inline optical attenuator should be inserted between the fiber-optic cable and the receiving port on the SFP at each end of the link for back-to-back connectivity. Like the last one, the Cisco 1000BASE-EX is also a Cisco singlemode SFP module, the detailed datasheet is shown in the following table.

Form Type GLC-EX-SMD
Max Data Rate 1000Mbps
Wavelength 1310nm
Max Transmission Distance 40km
Interface LC duplex
Fiber Type SMF
DOM Support Yes
TX Power -5~0dBm
Receiver Sensitivity < -24dBm
Operating Temperature 0 to 70°C (32 to 158°F)

Cisco 1000BASE-ZX SFP Datasheet

The Cisco 1000BASE-ZX SFP module operates on standard singlemode fiber optic link spans of up to approximately 70 km in length. The SFP provides an optical link budget of 21 dB, but the precise link span length depends on multiple factors such as fiber quality, number of splices, and connectors. This Cisco singlemode SFP datasheet is shown in the following table.

Form Type GLC-ZX-SM
Max Data Rate 1000Mbps
Wavelength 1310nm
Max Transmission Distance 80km
Interface LC duplex
Fiber Type SMF
DOM Support Yes
TX Power -2~3dBm
Receiver Sensitivity < -24dBm
Operating Temperature 0 to 70°C (32 to 158°F)

Conclusion

1000BASE SFP transceiver is the most commonly used component for Gigabit Ethernet application. And Cisco SFP modules account for a large share on Gigabit Ethernet optics’ market, which are paramount for data centers, enterprises and etc. With so many types available in the market, careful notice should be given to the range of differences, both in distance and price of Cisco multimode SFP and Cisco singlemode SFP module. FS.COM will be a good choice with good compatibility, support offerings and great reputation.

Why Not Use Third-party Dell SFP Transceivers for Your Dell Switches?

As a giant in IT technology, Dell’s products have been warmly welcomed by many Ethernet users over the years. From low-end Dell N1500, N3000 and N4000 series to the advanced Dell Z-Series, Dell provides a range of switch products for smaller enterprises and large campus networks. As basic and indispensable fiber optic components in fiber optic communication, SFP transceiver module plays a prominent role in optical transmission. This article will discuss what kind of third-party Dell SFP transceivers are compatible with Dell switches and which fiber optic transceiver manufacturer is the most reliable.

Dell SFP Transceivers

Dell divided their switches series as: web-managed switches, managed campus switches, modular chassis switches, data center switches, M-Series blade switches, Fibre Channel SAN switches, and high-performance computing switches. Dell puts emphasis on 1G/10G/40G switches. And thus, they manufactured a number of SFP transceiver modules, SFP+ modules, QSFP+ transceivers and DAC cables. Dell SFP transceiver delivers fiber connectivity to extend the range of your network. Dell 1000Base-SX, 1000Base-LX, 1000Base-ZX, 1000Base-Bidi, 1000Base-T are designed for SFP ports on Dell switches to support 1G Ethernet transmission.

dell-sfp-transceiver

The Dell networking 1000BASE-SX SFP transceiver module provides 1GbE connectivity up to 550 m. This hot-pluggable transceiver with SFP (Small Form Factor Pluggable) footprint features a duplex LC connector. Additionally, it provides a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, received optical power, and transceiver supply voltage.

Third-party Dell SFP Transceivers for Dell Switches

In addition to Dell original SFP transceivers, there are many third-party vendors who produce Dell compatible SFP transceivers, such as FS.COM. Our Dell SFP Transceivers are designed and tested to be fully compatible in all Dell switches, networking, and data center product lines and applications. We offer a wide variety of Dell SFP transceivers compatible for Dell switches, such as Dell Networking SFP-1G-LX 850nm (multimode), Dell Networking SFP-1G-LX 1310nm (singlemode), Dell PowerConnect 1000BASE-EX SFP 1550nm (singlemode), Dell Force10 Networks 1000BASE-SX SFP 850nm (multimode), and etc.

Comparison Between Dell and FS.COM Dell SFP Transceivers

There are so many third-party transceiver manufacturers providing compatible Dell SFP transceivers modules for Dell switches. But which fiber transceiver supplier should you choose? The answer is FS.COM. Now let’s see why FS.COM is more advantageous by comparing Dell with FS.COM Dell SFP.

—SFP Transceiver Module Category

The alternative Dell SFP transceivers are limited at Dell 1000Base-SX, 1000Base-LX, 1000Base-ZX, 1000Base-Bidi, 1000Base-T. You can rarely find 1G SFP transceiver modules on their official website. FS.COM provides a wide range of Dell SFP transceivers. Like being mentioned, Dell switches support some fiber transceivers from third-party fiber optic transceiver manufacturers. FS.COM offers many Dell compatible SFP transceivers, Dell networking compatible 1000BASE-T SFP copper transceiver, Dell PowerConnect compatible 1000BASE-SX SFP transceiver, Dell Force10 Networks compatible 1000BASE-ZX SFP transceivers, and etc, which can meet your various requirements for Dell switches.

—Fiber Transceiver Quality

Optical fiber transceiver attaches great importance to every brand, retails and customers. Reputation always comes first. Some manufacturers, however, produce SFP transceiver modules with low cost to attract more buyers and make profit. But their Dell SFP compatibility cannot be guaranteed. For FS.COM, we have switches from Cisco, Dell, Extreme, Juniper and other famous brands in our test center. Every fiber transceiver offered by FS.COM before shipping has to go through strict test to assure 100% compatibility and high performance.

—Fiber Transceiver Price

In addition to fiber transceiver quality, fiber transceiver price is another vital factor before you buy optical fiber transceivers. Comparing Dell SFP transceivers’ price of FS.COM with that of other fiber optic transceiver manufacturers, it is obvious that FS.COM has more advantages. That is one of the reasons why FS.COM wins popularity among customers. You can check the following table about price discrepancy between original Dell SFP transceiver and FS.COM Dell compatible SFP transceiver.

Module Dell FS.COM
Dell Networking 1000BASE-SX SFP $300 $6
Dell Networking 1000BASE-LX SFP $600 $7
Dell Networking 1000BASE-ZX SFP $2,400 $24
Dell Networking 1000BASE-T SFP $275 $16

Conclusion

If you need Dell SFP transceivers for your Dell switch, you can buy it from both Dell and third-party vendors. How to choose a reliable supplier from so many third-party Dell compatible fiber transceiver manufacturers? Before buying fiber optical transceiver, the quality, compatibility, price, shipping, after-sales service should be considered. As one of well-known third-party fiber optic transceiver manufacturers, FS.COM is suggested to be a good choice for Dell SFP transceiver.

QSFP-100G-SM-SR Vs QSFP-100G-CWDM4-S

With the thriving 100G market, QSFP28 has become the dominant form factor for 100G networks. The QSFP28 transceiver offers four channels of high-speed differential signals with data rates ranging from 25 Gbps up to potentially 40 Gbps, and meets 100 Gbps Ethernet (4×25 Gbps) and 100 Gbps 4X InfiniBand Enhanced Data Rate (EDR) requirements. As a world leader in IT and networking, Cisco 100G transceivers have been highly favored by many Ethernet users. Cisco 100G QSFP-100G-SM-SR and Cisco QSFP-100G-CWDM4-S are two different form factors of Cisco 100G optics. This article would give brief introduction to Cisco 100G QSFP-100G-SM-SR and Cisco QSFP-100G-CWDM4-S, and further analysis QSFP-100G-SM-SR Vs QSFP-100G-CWDM4-S.

Cisco 100G QSFP-100G-SM-SR

The maximum transmission distance of the Cisco QSFP-100G-SM-SR QSFP module is kilometers via a standard pair of G.652 singlemode fiber with duplex LC connectors. The 100 Gigabit Ethernet signal is carried over four wavelengths. Multiplexing and demultiplexing of the four wavelengths are managed within the device. The operating temperature range is from +10 to +60°C with an optical link budget of 4.2 decibels. This 4.2-decibel link budget offers the ability to support the loss from patch panels in the link in a data center environment. QSFP-100G-SM-SR is interoperable with QSFP-100G-CWDM4-S.

Cisco 100G QSFP-100G-CWDM4-S

As same as Cisco 100G QSFP-100G-SM-SR, Cisco 100G QSFP-100G-CWDM4-S supports link lengths of up to 2 kilometers as well. The QSFP-100G-CWDM4-S optical transceiver is for singlemode fiber. There are 4 CWDM-WDM lanes in the 12761-1331-nm wavelength window. This 100GBASE QSFP-100G-CWDM4-S Cisco 100G transceiver converts 4 input channels of 25Gb/s electrical data to 4 channels of CWDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission. It uses a duplex LC connector on the optical interface and uses an MSA-compliant 38-pin edge type connector on electrical interface. This QSFP-100G-CWDM4-S Cisco 100G transceiver is equivalent to Cisco QSFP-100G-SM-SR.

QSFP-100G-SM-SR Vs QSFP-100G-CWDM4-S

From the above descriptions, it is obvious that the Cisco QSFP-100G-SM-SR is compatible with Cisco QSFP-100G-CWDM4-S 100G optical transceivers. They are used interoperably. And thus, they have many things in common.

—Technology

Multiplexing and demultiplexing of the four wavelengths are managed within both Cisco 100G QSFP-100G-SM-SR Vs Cisco QSFP-100G-CWDM4-S. They convert 4 input channels of 25Gb/s electrical data to 4 channels of CWDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission.They all use a standard pair of G.652singlemode fiber.

—Transmission distance

The transmission reach of both Cisco 100G QSFP-100G-SM-SR and Cisco QSFP-100G-CWDM4-S all can be up to 2 kilometers.

—Price

The original Cisco 100G QSFP-100G-SM-SR and Cisco QSFP-100G-CWDM4-S optical module is pricey, so nowadays many enterprises and data center workers would choose to buy Cisco compatible optical modules from third party vendor. For the price of QSFP-100G-SM-SR Vs QSFP-100G-CWDM4-S, they are identical at fs.com.

Conclusion

Through this article, we are clear that the QSFP-100G-SM-SR and QSFP-100G-CWDM4-S can be used interoperably. And they are totally identical at large extent. And thus, there are basically no difference on QSFP-100G-SM-SR Vs QSFP-100G-CWDM4-S. Nowadays, they have been applied to data center, high-performance computing networks, enterprise core and distribution layers, and service provider applications.

A Comprehensive Understanding of CFP Modules

As a new emerging technology, 100G is some sort of evolution and part of revolution. The new CFP (C form-factor pluggable) optics is now a revolutionary step as one form factor of 100G optic transceiver. The CFP modules offer the enabling step for cost-effective and successful 100G deployment. So what is it? And how does it work in 100G network? This article would give a comprehensive introduction to CFP module.

100G CFP module

CFP Wiki

Abbreviated as CFP module, C Form-Factor Pluggable transceiver is a multi-sourced pluggable transceiver used in the transmission of high-speed digital signals. It is specified by a multi-source agreement (MSA) between competing manufacturers. The c stands for the Latin letter C used to express the number 100 (centum), since the standard was primarily developed for 100 Gigabit Ethernet systems. It is a hot-swappable input/output transceiver that is used in the data communication and telecommunication networks.

The CFP module was designed after the small form-factor pluggable transceiver (SFP) interface, but is significantly larger to support 100 Gbit/s. While the electrical connection of a CFP module uses 10 x 10 Gbit/s lanes in each direction (RX, TX) the optical connection can support both 10 x 10 Gbit/s and 4 x 25 Gbit/s variants of 100 Gbit/s interconnects (typically referred to as 100GBASE-SR10 in 100 meter MMF, 100G CFP LR10 and 100G CFP LR4 in 10 km SMF reach, and 100GBASE-ER10 and 100GBASE-ER4 in 40 km SMF reach respectively.)

Core Features of CFP Modules

– Support to 103 Gbps and 112 Gbps aggregate bit rates.

– Connector Interface

– Operating Case Temperature

– Diagnostic Monitoring

– RoHS6 Compliant

– Single 3.3V Supply for Power and a Power dissipation < 12W

One distinctive feature of CFP modules is that they support digital diagnostic monitoring functions or the digital optical monitoring. This is the feature that gives users the ability to monitor the real-time parameters such as the optical output power, the optical input power, the temperature, the laser bias current and the transceiver supply voltage.

Inner Structure of CFP Modules

The basic CFP modules consist of the following parts.

1. An Integrated Coherent Optics Transmitter which sends the TX optical signal.

2. An Integrated Coherent Optics Receiver which receives the RX optical signals.

3. The CFP connector

4. Coherent DSP

Most of the CFP module adhere OIF CFP-ACO (Analog Coherent Signals) and are connectable to multiple DSP’s. The biggest engineering challenge that CFP2 faces is the adoption of the high-speed 25 Gbps electrical interface due to the reason that the CFP was based on the third generation.

It can be a multimode parallel optic transceiver module that is designed to offer high-density 100G Ethernet and Optical Transport Network (OTN). The device is designed to offer maximization of the delivery of the 10G data channels for the 100G networks that support 100 Gbps SR10 and 10 X 10 Gbps.

Development of CFP Modules

The original CFP specification was proposed at a time when 10 Gbit/s signals were far more achievable than 25 Gbit/s signals. As such to achieve 100 Gbit/s line rate, the most affordable solution was based on 10 lanes of 10 Gbit/s. However, as expected, improvements in technology has allowed higher performance and higher density. Hence the development of the CFP2 and CFP4 specifications. While electrical similar, they specify a form-factor of 1/2 and 1/4 respectively in size of the original specification. Note that CFP, CFP2 and CFP4 optical transceiver are not interchangeable (but would be inter-operable at the optical interface with appropriate connectors). The following table shows the basic parameter of CFP, CFP2 and CFP4 transceivers.

basic parameter of CFP, CFP2 and CFP4 transceivers

Conclusion

In this article, we mainly introduced the definition, core features, inner structure and development of CFP modules. Comparing to 100G QSFP28 transceiver, CFP price is not so competitive. But CFP optical transceiver is still the key to cost-effective and reliable 100G deployment, and it has been widely deployed in OTU4 411-9D1F, 100GBASE-LR4 Ethernet and data centers.

Related article:
100G QSFP28 and CFP Transceiver Cabling Solutions

100G CFP to QSFP28 Adapter Converter Module Datasheet

With the explosive growth in mobile data traffic, data centers, and cloud services, people’s call for 100G Ethernet is more higher than ever before. To build and support the 100G Ethernet, a variety of technologies and devices are needed. 100G CFP modules, QSFP28 modules and 100G CFP to QSFP28 adapter converter module are of necessity. This article would put emphasis on introducing four 100G CFP to QSFP28 adapter converter modules and their applications.

Overview on 100G CFP to QSFP28 Converter Module

The 100G CFP to QSFP28 adapter converter module is a high performance, hot pluggable, and interconnect solution supporting 100G Ethernet and Telecom. The converter module converts a CFP MSA interface to 1-port of 100GE QSFP28. It is compliant with the CFP MSA. The converter module supports FEC (Forward Error Correction) function; the user can enable the FEC function through the register configuration.

100G CFP to QSFP28 Converter Module

100G CFP to QSFP28 adapter converter module converts 10 bidirectional 10G channels to 4 bidirectional 25G channels operating at up to 28Gbps per channel. By plugging 100G QSFP28 transceiver into the QSFP28 connector on the 100G CFP to QSFP28 adapter converter module, CFP module and QSFP28 module are interconnected. The 100G CFP to QSFP28 converter module datasheet is shown as below:

100G CFP to QSFP28 Converter Module

Cisco 100G CFP to QSFP28 Converter Module

Cisco CVR-CFP-100G supports modules with a 4x25G electrical interface. The CVR-CFP-100G supports modules with a 10x10G electrical interface such as 100G CFP. The CVR-CFP-100G CFP to QSFP28 converter module supports the two aggregate data rates of 100Gbps Ethernet and Optical Transport Network (OTN) rates. The CVR-CFP-100G CFP to QSFP28 converter module supports only the 100GBase Ethernet data rate. The Cisco CVR-CFP-100G CFP to QSFP28 converter module datasheet is shown as below:

Cisco 100G CFP to QSFP28 Converter Module

100G CFP2 to QSFP28 Converter Module

Like being mentioned 100G CFP to QSFP28 adapter converter module, 100G CFP2 to QSFP28 converter module converts 10 bidirectional 10G channels to 4 bidirectional 25G channels operating at up to 28Gbps per channel. By plugging 100G QSFP28 transceiver into the QSFP28 connector on the 100G CFP2 to QSFP28 adapter converter module, 100G QSFP28 transceiver is in the CFP2 port of your device. In this way, power consumes less than using an equivalent CFP2. The 100G CFP2 to QSFP28 converter module datasheet is shown as below:

100G CFP2 to QSFP28 Converter Module

Cisco 100G CFP2 to QSFP28 Converter Module

The Cisco CVR-CFP2-100G adapter converter module allows a Cisco 100G QSFP28 transceiver module to be plugged into a CFP2 port and to emulate an optical CFP2 100G Module. The Cisco CVR-CFP2-100G CFP2 to QSFP28 converter module datasheet is shown as below:

Cisco 100G CFP2 to QSFP28 Converter Module

Conclusion

This article mainly introduced four types of 100G CFP to QSFP28 converter module, the principles of converting, as well as the method of usage. The price of 100G CFP to QSFP28 converter module is just a little bit higher than CFP price. But the CFP to QSFP28 converter module has lower power consumption than CFP. Thus, the 100G CFP to QSFP28 converter is more cost-effective. Nowadays, the 100G CFP to QSFP28 converter modules have been widely deployed to high-speed core router connections, datacom/telecom switch, data aggregation and backplane applications, and proprietary protocol and density application.

A Glimpse Into The Future: 25G & 50G Ethernet

With the ever growing usage of 10G network, 10G could not satisfy the requirement for some Ethernet network users who urge for a higher demand on speed, distance, media and cost. Under this circumstance, upgrading network is paramount. For 100G network upgrading, there are three available approaches, “10G—40G—100G”, “10G—25G—100G” or “10G—25G—50G—100G”. The latter two are announced to better satisfy the data center and cloud network. Comparing to 40G and 100G, people heard less about 25G and 50G. So what are they? This article would put emphasis on 25G Ethernet and 50G Ethernet as well as their optics.

25G-100G immigration

25G Ethernet

25 Gigabit Ethernet, abbreviating as 25G Ethernet, is standard for Ethernet network connectivity. Developed by IEEE P802.3by 25 Gb/s Ethernet Task Force, 25G Ethernet is a standard for Ethernet connectivity. The 25 Gigabit Ethernet Consortium is an open organization to all third parties who wish to participate as members to enable the transmission of Ethernet frames at 25 or 50 Gigabit per second (Gbps) and to promote the standardization and improvement of the interfaces for applicable products. The main features of 25G Ethernet are listed in the following:

  • A single lane per physical port maximizes the number of connected servers or uplinks per switch.
  • Single higher speed 25 Gb/s lanes maximize bandwidth and switch fabric utilization vs. 4 x 10 Gb/s lanes.
  • Overall higher port count, utilization and total server interconnect bandwidth vs. 40 GE.
  • Connections to switch ASICs is limited by SERDES count and bandwidth.

SFP28 Pluggable Modules

SFP28 is the abbreviation of Small Form-Factor Pluggable 28, which is the third generation of SFP interconnect systems. The SFP28 optical module is designed for 25G performance and developed by the IEEE 802.3by specification. According to the SFP28 Multi-Source Agreement (MSA) and SFP28 specification, the SFP28 is designed with a form factor, optical/electrical connection and digital diagnostic interface. In addition, the SFP28 optical transceiver has also been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. Below are the industry standard 25G optics:

industry standard 25G optics

50G Ethernet

Comparing to 40G Ethernet, 50G Ethernet is more rarely known by people. Being led by the 25G Ethernet Consortium, 50G Ethernet is initially based on 2 lanes of 25 Gb/s. IEEE802.3bs is the 50G per lane specifications to support Nx50G configurations. And the standard expected in September 2018 while the interface expected on the market in 2018+. Different from 40G Ethernet, 50G initial limited deployment as proprietary 2x25G. In terms of technology, 40G and 50G per lane (Serial) technology will be defined together (40G as reduced speed 50G). With the respect of cost, 40G and 50G Serial will have similar cost, i.e. 50G Serial will offer 25% more bandwidth for the same cost. The core features of 50G Ethernet are listed in the below:

  • A faster base signaling rate is needed to for higher capacity.
  • Similar to 25 GE, 50 GE extends existing common network topology for higher speed.
  • The server and data center market requirements vary widely.

50G Pluggable Modules

New 50 GE pluggable modules are in the same common form factor sizes as other common pluggable modules. There are two form factors of 50G modules, SFP56 and QSFP56. The SFP56 pluggable module has the same size as SFP, SFP+ and SFP28 while the QSFP56 pluggable module has the same size as QSFP, QSFP+ and QSFP28.

Conclusion

Through this article, we are cleared the 25G and 50G Ethernet as well as their optics respectively. With the ever increasing usage of network data due to millions of new connected devices to servers and storages data centers, 25G Ethernet and 50G Ethernet provide a flexibility, scalibilty, cost-efficient way for adapting to future network growth.

10GBASE-T vs SFP+, Which is Preferred for 10G Network Cabling

As the basis of upgrading network, 10G network has been ubiquitous in data center, enterprise network and even home networking. 10GBASE-T and SFP+ transceiver are two different kinds of technology which transmit data via copper and fiber respectively. 10GBASE-T technology provides the most flexible and economical solution while 10G SFP+ offers the compatible and user-friendly solution for 10G Ethernet connectivity option. This article would shed light on 10GBASE-T vs SFP+.

10GBASE-T Technology

As the fourth generation of IEEE standardized Base-T technologies, 10GBASE-T is designed to reduce overall costs and improve flexibility. By using RJ45 connectors and unshielded twisted pair cabling, 10GBASE-T allows 10Mbps, 100Mbps, 1Gbps, and 10Gbps data transmission, while being backward-compatible with prior generations. Merits and demerits of using 10GBASE-T are listed in the below.

Pros of 10GBASE-T
  • Cheap twisted pair cables.
  • Patch panels can be used without messing around with transceivers.
Cons of 10GBASE-T
  • Higher power consumption.
  • People may get tempted to use substandard cabling, and this would have a negative influence on the speed.
  • No good way to extend length beyond 100m (though this can be somewhat mitigated by choosing switches with mostly 10GBASE-T but also a handful of SFP+ ports) limited choice of equipment.

10G SFP+ Technology

The 10G SFP+ transceiver meets the standard of Multi-Sourcing Agreement (MSA), and provides the cost effective solution for 10G optical data communication. It supports both duplex and simplex LC optics interfaces. The 10G SFP+ transceiver consists of 10Gbit/s DFB/EML optical transmitter and PIN receiver, which allow 300m~120km 10G Ethernet and 10G fiber channel applications. Advantages and disadvantages of using 10G SFP+ transceivers are listed in the below.

Pros of SFP+
  • Lower latency
  • Lower power consumption
  • Cheaper NICs and switches
  • More choice of connected equipment.
  • With transceivers and fiber basically any run length can be covered.
Cons of SFP+
  • Apparently, it is not a big deal for transmission within short distance.
  • For longer runs or runs that need to go through patch panels needs transceivers and optical fiber. Fiber itself is cheap but transceivers, termination, patch panels, and etc for fiber would cost a lot.

10GBASE-T vs SFP+

This passage would mainly demonstrate the difference between 10GbE base T and SFP+ options from the respective of technology, latency, and power consumption.

10GBASE-T vs SFP+: Technology

Generally, 10GBase-T is cheaper and easier to deploy than the alternative SFP+ technologies. You can further compare these two different technologies in the following table:

10GBASE-T vs SFP+ Comparison

10GBASE-T vs SFP+: Latency

Low latency is paramount to ensure fast response time and reduce CPU idle cycles. That increases data center efficiency and ROI. With the increasing of using private cloud applications, the need for low latency is growing fast in large scale data centers.

When it comes to 10GBase-T, the PHY standard uses block encoding to transport data across the cable without errors. The standard specifies 2.6 microseconds for the transmit-receive pair, and the size of the block requires that latency to be less that 2 microseconds. SFP+ uses simplified electronics without encoding, and typical latency is around 300 nanoseconds (ns) per link. You can further compare them in the below table.

10GBASE-T vs SFP+ latency comparison

Basically, there are only slight differences between 10GBASE-T and SFP+ in terms of application latency. Relatively speaking, 10G SFP+ has lower latency than 10GBASE-T. High latency would exert negative influence on CPU and therefore limiting data center efficiency and increasing operational costs.

10GBASE-T vs SFP+: Power Consumption

10GBase-T components today require anywhere from 2 to 5 watts per port at each end of the cable (depending on the distance of the cable) while SFP+ requires approximately 0.7 watt (regardless of distance). The difference is clearly shown in the below chart.

10GBASE-T vs SFP+ power consumption comparison

(Resource: http://www.datacenterknowledge.com)

10GBASE-T vs SFP+, Which Will You Choose

Through this article, we are clear about the pros and cons of 10GBASE-T and SFP+ as well as their differences in technology, application latency and power consumption. It is evident that SFP+ is the right technology to ensure optimal performance with lowest latency and lower power usage in the data center. The cost saving becomes obvious when deploying from 1000 to 10,000 cables in the data center.

Related Articles:

XFP vs SFP+, What’s the Difference? Can We Connect XFP and SFP+?

Understanding of 10GBASE-T SFP+ Copper Transceiver Modules

Choose 10GBASE-T Copper Over SFP+ for 10G Ethernet

Cloud Core Switch—An Economic Choice for L3 Switch

MikroTik Switches have been popularly received favorable reviews, and this is inseparable with their keeping on the bleeding edge of switching technology. As a new member of MikroTik Smart Switch series, cloud core switch, also called cloud router switch, combing the best features of a fully functional router and a Layer 3 switch. That is to say, this cloud router switch works as both switch and router to connect the VLAN. This article would mainly discuss about cloud core switch, CRS226-24G-2S+RM switch and its connectivity solutions, as well as the reasons why they are economic choice for L3 switch.

About Cloud Core Switch

The cloud core switch, or cloud router switch, abbreviated as CRS, is a highly configurable switch, powered by RouterOS. It has 24 Gigabit Ethernet port. The Ethernet port 2-24 are switched, and the device can be accessed via these ports through the IP 192.168.88.1. Ethernet port 1 is configured as a DHCP client and has firewall on it. The SFP port is configured the same way as Ethernet 1, with a firewall and DHCP client on it. For the cloud router switch, there are nine models currently available. Here lists three different cases of the cloud core switch:

  • CRS125-24G-1S-2HnD-IN (integrated wireless, indoor case)
  • CRS125-24G-1S-IN (indoor case)
  • CRS125-24G-1S-RM (rackmount case)

MikroTik cloud router switch

Figure1: MikroTik cloud router switches(Resource: www.MikroTik.com)

Cloud Core Switch CRS226-24G-2S+RM

As one of the cloud core switches, CRS226-24G-2S+RM have been highly favored by most people. CRS226-24G-2S+RM is a fully functional layer 3 cloud router switch powered by Router OS, which is also available in 1U rackmount case. It comes with a special switch menu which includes all the specific configuration options for switches. It has 24 Gigabit ports and two SFP+ cages for 10G connectivity in which first SFP port supports 1.25G/10G modules and second port only 10G modules. Ports can be removed from the switch configuration and used for routing purposes if needed. The most distinctive feature of CRS226-24G-2S+RM is that uses a new class of switch chips, which allows us to have two SFP+ ports for 10G connectivity. The main features of this cloud core switch are listed in the following:

  • Fully manageable L3 switch, full wire speed switching
  • Configure ports as switch, or for routing
  • If required, full RouterOS power right there
  • SFP+ ports for 10G connectivity

CRS226-24G-2S+RM_big

Figure2: cloud core switch CRS226-24G-2S+RM(Resource: www.MikroTik.com)

Connectivity Solutions for CRS226-24G-2S+RM

As being mentioned, the cloud core switch CRS226-24G-2S+RM has 24 Gigabit ports and 2 SFP+ ports. For the twenty-four 10/100/1000 Ethernet ports, you could use both network cables and optical transceivers to connect. The transmission speed of Cat5 and Cat5e cables can be up to 100 Mb/s and 1G respectively. Besides, you can also use 10/100/1000BASE-T copper transceiver to make network connectivity. But it costs more than the network cables. In terms of 10G SFP+ ports, there are also two connectivity approaches. You can use both 10G SFP+ modules and 10G SFP+ DAC copper cable to connect. Relatively speaking, the 10G DAC cable is cheaper a lot than the 10G transceiver. But if transmission quality is your pursuit, and then 10GBASE SFP+ transceivers would be a good choice.

Why Are Cloud Core Switches Economic Choice for L3 Switch?

According to the above description, cloud core switches are powered by Router OS. RouterOS lets you add upper layer functionality. The cloud core switch is very far below wire speed when doing layer 3 or above. In fact, the cloud core switch is more of a bare-bones layer 2 switch that has an embedded low-horsepower router. In short, the switch features are useful for making bridges that work at wire speed, but they’re limited to simple forwarding and vlan handling. The bridge feature lets you glue almost anything together, and gives lots of filtering/manipulation tools, but it cannot perform at wire speed because it uses the main CPU. Last but not least, the average prices of Mikro Tik cloud core switches are not more than $150, you can check them by this link.

Conclusion

Cloud core/router Switch is a managed switch that runs RouterOS and SwitchOS, which delivers a high performance as a Layer 3 switch. They allow to manage port-to-port forwarding, apply MAC filter, configure VLANs, mirror traffic, apply bandwidth limitation and even adjust some MAC and IP header fields. The economic L3 switch including several switch models covering wide range applications, like enterprise network and home network.

Dell Powerconnect 2700 Vs. 2800 Series Switches

Both the Dell PowerConnect 2700 series and 2800 series switches are secure, fixed-port Gigabit switches. The Dell PowerConnect 2700 series was launched in the early 2000s, designed to deliver full wire-speed switching performance. Not long after the 2700 series, the 2800 series were released to support jumbo frames for networks that need to move large files across the network. They are both cost-effective solutions for small network environments, such as branch offices, schools and etc. However, it seems that it is hard to make a decision about purchasing these two series switches. This article would offer a satisfied solution to you and give a brief introduction to 2700 series and 2800 series switches.

Dell PowerConnect 2700 Series Switches

The Dell PowerConnect 2700 series switches are web-managed switches, the web-interface allows the user to easily manage the switch without learning CLI commands or integrating the switch into an SNMP-based application. These switches offer three port densities, including 8, 16, 24 and 48 Gigabit Ethernet 1 ports. Besides, the 2724 and 2748 have SFP slots in a combo port arrangement that deliver fiber capabilities. Auto MDI/MDIX and autonegotiation of speed, duplex mode and flow help deliver improved control over your network traffic. Totally, there are four models of 2700 series switch—Dell PowerConnect 2708, 2716, 2724, 2748. The main features of these switches are listed in the below:

  • There switches are prepared in advance for any elevated IT requirements.
  • They could eliminate the potential risks within the switch.
  • The 2700 series switches provide the flexibility to meet the requirement of various end users and applications environments.
  • They provide smartly balancing quality and the best prices.

dell-powerconnect-2716-overview

Figure1: Dell Powerconnect 2716 switch(Resource: www.DELL.com)

Dell PowerConnect 2800 Series Switches

As same as the 2700 Series Switch, Dell PowerConnect 2800 Series Switches are also web-managed Gigabit Ethernet switches. These switches offer four port densities, including 8, 16 , 24, and 48 port Gigabit Ethernet ports. In addition, the 2824 and 2848 have SFP slots in a combo port arrangement that deliver fiber capabilities (SFP transceivers optional). The PowerConnect 2800 family also supports jumbo frames for networks that need to move large files across the network. There are also four switch models of 2800 series switches—Dell PowerConnect 2808, 2816, 2824, and 2848. Main benefits of 2800 series switches are listed in the following.

  • Easy web access to the managed features provides a secure environment by offering password restricted access.
  • These switches offer enhanced security by allowing the user to specify which IP addresses have access to the switch.
  • The 2800 series switches support up to six link aggregation groups consisting of up to four ports per group.
  • Advanced cable diagnostics help improve network troubleshooting.

Dell 2800 series switch

Figure2: Dell 2800 Series Switches(Resource: www.DELL.com)

Dell 2700 Vs. 2800 Series switches

As being described, the Dell PowerConnect 2700 and 2800 series switches are nearly identical. But they still have some subtle differences in STP, management configuration, switching and price.

—Spanning Tree Protocol (STP)

Compared to Dell PowerConnect 2700 series switches, 2800 series support more STP protocols and support 9000 jumbo frames (not not 9014, etc.). If you do a ping -f on the 2724 with jumbo frames enabled it will go to 5000, 5500, 6000, but not 9000 – they get fragmented at that point. Granted that is only useful for iSCSI traffic, and even then it’s not 100% necessary. And the 9014+ jumbo frames is of the preference.

—Management Configuration

Both 2700 and 2800 series switches are small office switches with minimal management. They all not have LACP. BootP/DHCP IP address management or Static IP address assignment are set within the 2800 series switches. The 2800 series switches have CLI and SNMP Command Subset while the 2700 series switches do not.

—Switching

The link aggregation of both two series switches are up to eight aggregated links and up to eight member ports per aggregated link (IEEE 802.3ad). But the Jumbo frame of 2700 series switches support up to 9000 Bytes (2716, 2724, and 2748). The 2800 series switches have LACP support (IEEE 802.3ad).

—Price

Compared to 2700 series switches, 2800 series switches are cheaper. Just take the same 16-port switch for a example, a new Dell 2816 switch only needs $56 while a new Dell 2716 switch costs $112 on eBay.

Conclusion

Through this article, we are clear about the Dell 2700 and 2800 series Gigabit Ethernet switches as well as their differences in STP, management configuration, switching and price. They all powerful switches with outstanding cost and power savings. You can select an appropriate one according to your need.

QSFP-40G-UNIV vs QSFP-40G-SWDM4

Nowadays, the demand for high bandwidth increases and footprints for data center expands dramatically, which makes the migration from 10G to 40G much more necessary than ever before. Under this condition, many enterprises are ongoing or imminent to upgrade their data center network infrastructures. To better cater for our users, two transceivers 40G UNIV and 40G SWDM4 QSFP using SWDM (Short Wavelength Division Multiplexing) technology are compared in the following text, which intends to offer a cost effective transceiver solution for 10G to 40G migration applications. As parallel multimode MPO fiber cabling is much more expensive than Duplex-LC fiber cabling, Duplex-LC fiber patch cords will be used in these two SWDM applications, as a cost saving cabling method.

40G Direct Port-to-Port Connection

QSFP 40G UNIV Transceiver for SWDM Application

QSFP 40G UNIV is a kind of pluggable optical transceiver that fitted with Duplex-LC connector and can work with both single-mode and multimode fiber patch cable, originally released by Arista. Hence, it is also referred to as 40G SMF&MMF transceiver or 40G QSFP universal transceiver. When working with singlemode fiber, the Arista QSFP 40G UNIV can support 40G connection with a reach of 500m; and over OM3/OM4, the transmission distance can be up to 150m. Furthermore, the Arista QSFP 40G UNIV is designed with four 10G channels for transmitting and receiving four individual 10G signals through a single Duplex-LC fiber patch cord, for achieving a total 40G connection, as shown in the following figure.

Arista QSFP 40G UNIV

How does the Arista QSFP 40G UNIV work for 40G connection? The answer is SWDM technology. With the help of SWDM, Arista QSFP 40G UNIV will multiplex four wavelengths 1270nm, 1290nm, 1310nm and 1330nm to transmit four 10G signals over the single Duplex-LC fiber patch cord. And when the aggregate 40G signal passes through the receiver end, it will be demultiplexed into four individual 10G signals again. As a result, an aggregate 40G signal can be transmitted through a single Duplex-LC fiber patch cord. In short, Arista 40G universal transceiver is a very good choice for 40G migration which can work with LC-duplex single-mode or multimode fiber, instead of high-cost parallel multimode MPO fiber cabling.

QSFP 40G SWDM4 Transceiver for SWDM Application

QSFP 40G SWDM4 is an updated optical transceiver that basically works with Duplex-LC fiber patch cord for short 40G fiber link. It has the same working principle that uses SWDM technology as the QSFP 40G UNIV one, but can perform better. How does it do this? Unlike QSFP 40G UNIV working with both single-mode and multimode fiber, the QSFP 40G SWDM4 is designed to work with multimode fiber, which can transmit a multiplexed 40G signal over wide band OM5 at lengths up to 440m. It can also work in multimode fiber OM3 and OM4 with a reach of 240m and 350m, separately. What’s more, the power dissipation of QSFP 40G SWDM4 can be as low as 1.5W* since SWDM technology can match 4x WDM optical architecture with 4x electrical interface.

Similar to the QSFP 40G UNIV transceiver, four different wavelengths, 850nm, 880nm, 910nm and 940nm are used in the QSFP 40G SWDM4 transceiver. To transmit a total 40G signal, these four wavelengths will be multiplexed to carry four individual 10G signals, be transmitted through the Duplex-LC multimode fiber patch cord and finally demultiplexed. To better understand the principle of QSFP 40G SWDM4 transceiver, you can learn the above figure that illustrates how does the QSFP 40G SWDM4 work for a short distance 40G fiber link.

40G SWDM4 Transceivers

QSFP-40G-UNIV vs QSFP-40G-SWDM4, Which One is Better?

After discussion, we can learn that both QSFP 40G UNIV and QSFP 40G SWDM4 transceivers enable network operators to grow the capacity of their networks without laying new fiber cabling. In view of the transmission distance, QSFP 40G SWDM4 transceiver working with OM5 supports a longer 40G fiber link than QSFP 40G UNIV with OM3/OM4, but a shorter 40G fiber link than QSFP 40G UNIV with single mode fiber cable. When taking fiber cabling infrastructure cost into consideration, OM5 cabling costs about 50% more than OM4 and singlemode fiber is also very expensive. Then which one should be selected? Just depending on your network needs, such as the fiber link distance, the budget, etc. To better know the differences between QSFP 40G UNIV and QSFP 40G SWDM4 transceivers, here offers a table that shows their detailed parameters.

QSFP-40G-UNIV vs QSFP-40G-SWDM4

QSFP-40G-SR4 VS. QSFP-40G-UNIV

Due to the ever-increasing requirement for higher speed transmission, 40G Ethernet is introduced to networking world, and it will gradually dominates the market. Many vendors have released different kinds of devices to support 40GbE, among which 40G QSFP+ module is the most popular and available for short distance or long distance data transmission. There are two variants short distance QSFP+ modules: QSFP-40G-SR4, and QSFP-40G-UNIV, what are the differences among these two types? This passage will tell you and give more information.

Differences in Interfaces and Transmission Media

Commonly, for QSFP+ modules, there are mainly two connector interfaces: MPO/MTP and duplex LC(Note: LC interfaced QSFP+ uses serial transmission, while MPO/MTP interfaced QSFP+ uses parallel transmission. In serial transmission, bits are sent simultaneously on different channels within the same cable, and in parallel transmission, bits are sent sequentially on the same channel). QSFP-40G-SR4 uses MPO/MTP to achieve data transmission over multimode fiber. However, in order to avoid wasting cost and deployment time when installing in different cabling structure, duplex LC interfaced QSFP-40G-UNIV is designed to be used in both single-mode and multimode links without adding any hardware or software.

different interface between QSFP-40G-SR4 and QSFP-40G-UNIV

Differences in Working Principle

For MPO/MTP interfaced 40GBase-SR4, it offers 4 independent full-duplex transmit and receive channels, each capable of running up to 10G data rates per channel, achieving the total 40G data rates. These modules are often used with 12-fiber MTP trunk cable, four transmitting and four receiving, leaving the middle four unused. For duplex LC interfaced 40GBase-UNIV, it also uses four transmitters and four receivers but has built in optical multiplexing and de-multiplexing, which results in a duplex connector and hence operates over the same duplex fiber infrastructure as 10GBASE-SR.

different working principle of QSFP-40G-SR4 and QSFP-40G-UNIV

Differences in Transmission Distance

40GBase-SR4 module can support link lengths of 100 meters and 150 meters, respectively, on laser-optimized mutimode fibers, and it can also be used in a 4x10G mode interoperability with 10GBase-SR interfaces up to 100 and 150 meters on OM3 and OM4 fibers, respectively. 40GBase-UNIV can support the same transmission distance over OM3 and OM4 fibers, but it can also achieve link lengths of up to 500 meters over single-mode fiber.

Differences in Cost Consumption

40GBase-UNIV is much more expensive than 40GBase-SR4. Take FS.COM for example, 40GBase-UNIV is $340, while 40GBase-SR4 is $55. Besides the price of the unit itself, we should also take the whole deployment cost consumption into consideration. Migrating from 10G to 40G is inevitable. The existing 10G network uses two fibers for dual transmission. But most 40G network uses 12-fiber MTP based fiber optic cable for dual-way transmission over multimode fibers, which means if we use 40GBase-SR4 with MTP port for 10G to 40G migration, more optical fibers will be added and the cabling infrastructure will be changed. However, with 40GBase-UNIV module, it can support the same or longer transmission distance as the 40GBase-SR4 does, but it uses two strands of dual-way transmission like most 10G network, which will keep the existing 10G network when upgrade to 40G, greatly saving cost and time.

10G to 40G migration with QSFP-40G-SR4 and QSFP-40G-UNIV

Conclusion

We have introduced QSFP-40G-SR4 and QSFP-40G-UNIV modules for short distances transmission. These two module types have different features. Choosing which one totally depends on your practical applications and budgets. FS.COM has plenty of QSFP-40G-SR4 and QSFP-40G-UNIV optics in stock. For more information, please check FS.COM.

Enhance Your Network With 40G QSFP+ AOC Cable

To meet the requirements for higher bandwidth and throughput, 40 Gigabit Ethernet has become a trend for data transmission. A series of 40G equipment are designed to achieve the seamless interconnection in the 40G network. Devices like 40G fiber optic transceivers and 40G direct attach cables are widely used for the high speed transmission. 40G direct attach cables (DAC) are optimal solutions for short range connectivity. It can be further divided into the direct attach cable and active optical cable (AOC cable). This article will focus on presenting you some cost-effective 40G QSFP+ AOC cable solutions to improve your network.

Basic Knowledge of Active Optical Cable

AOC cable is a cabling technology that accepts the same electrical inputs as a traditional copper cable, but uses optical fiber “between the connectors”. It adopts electrical-to-optical conversion on the cable ends to improve speed and distance performance of the cable without sacrificing compatibility with standard electrical interfaces. AOC cable is especially used for short-range multi-lane data communication and interconnect applications. It is made up of the multimode optic fiber, control chip and different connectors with one end terminated with QSFP+ connector and the other end terminated with QSFP+, SFP+, LC or else connectors.

active optical cable

Reasons for Choosing 40G QSFP+ AOC Cable

However, why do we often use 40G QSFP+ AOC cable instead of QSFP 40G SR4 module? In fact, 40G QSFP+ AOC cable has many benefits that will provoke your interest for choosing it. First is the lower cost compared to the module since the AOC cable saves the need for extra fiber patch cables. Second is the low insertion and return loss. Although it is used for the same transmission distance, the repeatability and interchangeability performances of 40G AOC cable are better than 40GBASE-SR4 module. Thirdly, under the four-quadrant test, which is used to test whether the product still keeps better performance even under the lowest and highest voltage and temperature situations, the AOC cables are qualified to meet all the demands.

40G QSFP+ AOC Cable Solutions

Here provides some common 40G QSFP+ AOC cable solutions that are welcome in the market.

  • Solution 1: 40G QSFP+ to QSFP+ AOC Cable

Each end of this AOC cable has a QSFP+ connector used for 40G data propagation. The maximum length can reach up to 100 meters. It is a 40 Gbps parallel active optical cable which transmits error-free parallel 4×10 Gbps data over multimode fiber (MMF) ribbon cables.

40g qsfp+ aoc cable

  • Solution 2: 40G QSFP+ to 4xSFP+ AOC Cable

QSFP+ to 4x SFP+ AOC cable is a breakout cable offering the professionals a cost-effective interconnect solution for merging 40G QSFP+ and 10G SFP+ between devices of adapters, switches and servers. Users can install this AOC cable between an available QSFP+ port on their 40Gbps rated switch and feed up to four upstream 10G SFP+ enabled switches.

40g qsfp 4sfp aoc cable

  • Solution 3: 40G QSFP+ to 8xLC AOC Cable

This is also a breakout AOC cable with a QSFP+ connector on one end and 8xLC connectors on the other. It is a high performance, low power consumption, long reach interconnect solution supporting the 40G Ethernet compliant with the QSFP+ MSA and IEEE P802.3ba 40GBASE-SR4. It is an assembly of 4 full-duplex lanes. Each lane is able to transmit up to 10 Gbps data rate providing an aggregated rate of 40 Gbps.

40g qsfp 8lc aoc cable

Conclusion

Along with the popularity of 40G Ethernet, the market of 40G QSFP+ AOC cable has been growing over the years. It is definitely a better choice for high speed transmission over short distances. Additionally, if you are looking for higher bandwidth AOC cables, there are also 100G QSFP28 AOC cable and 120G CXP AOC cable suitable for your needs.

Related Article: Active Optical Cable (AOC) – Rising Star of Telecommunications & Datacom Transceiver Markets

Pluggable Optical Transceiver Used in Data Centers

Today’s data centers are going through unprecedented growth and innovation as emerging optical standards and customers’ demands for higher-level networking services converge. Bandwidth, port density and low-power demands come as the main drivers that populate the deployment of fiber optic networks. And in fiber optic network implementations, pluggable optical transceiver provides a modular approach to safe-proof network design and become the ideal choice to meet the ever-changing network needs in data centers. This text just mainly introduces pluggable transceivers deployed in data centers.

A Quick Question: What Are Pluggable Optical Transceiver?

Pluggable optical transceivers are transceivers that can be plugged into routers, switches, transport gear, or pretty much any network device to transmit and receive signals. They are hot swappable while the device is operating, standardized to be interchangeable among vendors, capable of operating over many different physical medium and at different distances. For instance, pluggable optical transceiver can work through copper, through fiber optic cables available in both singlemode fibers (SMFs) and multimode fibers (MMFs), realizing 100m, 300m, 10km, 80km distance reach, etc. In addition, these hot-swappable transceivers are also able to support a wide variety of speeds, like 1Gbit/s, 10Gbit/s, 40Gbit/s, 100Gbit/s, or even higher.

Pluggable Optical Transceiver – Standards & Protocols

Just as what has been mentioned above, pluggable optical transceivers are interchangeable. These interchangeable transceivers allow a single device to operate with a wide selection of protocols and functions. Listed below are commonly-used pluggable transceiver standards and protocols.

SFP—The small form-factor pluggable (SFP) supports a wide range of protocols and rates, such as Fast and Gigabit Ethernet (GbE), Fibre Channel (FC), and synchronous optical networking (SONET) for dual and bidirectional transmission. SFP medium are available in SMF, MMF, and copper. For MMF media, there exists 1000BASE-SX port type used in 1GbE applications. Take J4858C for example, this HP 1000BASE-SX SFP can realize a maximum of 550m reach at 1.25 Gbit/s over MMF.

HP 1000BASE-SX SFP optical transceiver

SFP+—The enhanced small form-factor pluggable (SFP+) is an enhanced version of the SFP, supporting data rates up to 16Gbit/s. It was first published on May 9, 2006, and version 4.1 was published on July 6, 2009, supporting 8Gbit/s FC, 10GbE and Optical Transport Network standard OTU2. SFP+ is a popular industry format supported by many network component vendors.

XFP—The XFP (10G SFP) is a standard for transceivers for high-speed computer network and telecommunication links that use optical fiber. Its principal applications include 10GbE, 10Gbit/s FC, SONET at OC-192 rates, synchronous optical networking STM-64, 10 Gbit/s Optical Transport Network (OTN) OTU-2, and parallel optics links.

QSFP—The Quad Small Form-factor Pluggable (QSFP) is a also a compact, hot-pluggable transceiver used for data communications applications. QSFP+ transceivers are designed to carry Serial Attached SCSI, 40GbE (100G using QSFP28), QDR (40G) and FDR (56G) Infiniband, and other communications standards. They increase the port-density by 3x-4x compared to SFP+ modules. In 40GbE applications, these QSFP+ transceivers establish 40G links with distances up to 300m over MMF, and 40km over SMF. QSFP can also take copper as its media option when the required distance is short. Like QSFP-4SFP10G-CU5M, this product is the QSFP to 4 10GBASE-CU SFP+ direct attach passive copper cable assembly designed for relatively short reach, that is 5m. The image below just shows what this QSFP-4SFP10G-CU5M product looks like.

QSFP-4SFP10G-CU5M, QSFP to 4 10GBASE-CU SFP+

CFP—The C form-factor pluggable (CFP) is a multi-source agreement (MSA) to produce a common form-factor for the transmission of high-speed digital signals. The c stands for the Latin letter C used to express the number 100 (centum), since the standard was primarily developed for 100 Gigabit Ethernet systems.

Conclusion

Pluggable  optical transceivers offer distance extension solutions, allowing flexibility in network reach and easy replacement in the event of component failures. They are the answer to today’s network architecture and performance demands. FS.COM supplies various pluggable optical transceivers supporting different speeds, like SFP (J4858C), SFP+, XFP, QSFP, CFP, etc.

How Transceiver Module Helps to Support Big Data in Data Centers?

Today’s data centers need to better adapt to virtualized workloads and the ongoing enterprise transition to hybrid clouds, since business owners always rely on big date technology to get timely information and make immediate decisions. Transceiver module, one of the most critical designs in telecommunication field, is related to the promotion of big data in data centers, helping business owners get their data in real-time. This just explains the importance of being aware of the three ways in which transceivers help support big data in data centers.

Transceiver Module Facilitates High Speed Data Transfers

A growing number of enterprises are transiting to private and hybrid clouds, which drives the bandwidth and connectivity requirements. As high-speed data carrier, transceivers facilitate high speed data transfers. Enterprises that want to achieve faster transmission have to choose transceivers with high quality. There are many types of transceivers available in the market, such as SFP, SFP+, XFP, QSFP, etc. Each type of transceiver is designed to support different data rate. Capable of transmitting data at 10Gbit/s, 40Gbit/s, 100Gbit/s or even 120 Gbit/s, transceivers can realize the high-speed data transfer, ensuring bandwidth upgrades in enterprise data centers. Take 10GBASE SFP+ modules for example, these hot-pluggable transceivers (eg. SFP-10G-SR) deployed for 10 Gigabit Ethernet (GbE) applications, though designed physically small, can handle fast transmission with the maximum data rate of 10.3125Gbps.

SFP-10G-SR, handles fast transmission

Transceiver Module Promotes Data Transmission Process in Data Centers

Enterprise that need to manage big data can benefit from the use of transceivers. Data centers are places where enterprises store the barrage of data that comes from their offices. The information is usually stored in the cloud where employees and executives have access to the information in determining the actions they need to make in their organizations. The data centers need to transmit data accurately, securely, and rapidly. Transceiver technology can promote the data transmission process in data centers.

Transceiver module Promote Data Transmission Process in Data Centers

Transceiver Module Supports Big Data in Data Centers

Data centers have experienced the exponential growth as the demand for big data increases. Greater bandwidth is necessary to support many applications, like video download, live online show, and other types of data. Transceivers are a necessity in ensuring that the data is transmitted securely, expeditiously, and accurately via the fiber. Transceivers are used in conjunction with multiplexers and switches. When they work together, managing network capacity becomes an easy task.

Additionally, transceivers also have a role in companies’ sales. It’s known that big data can be accessible on mobile devices through the cloud. Transceivers are capable of facilitating the transmission from wireless cell tower base stations. Company employees like salesmen are always on-the-go to make sales, and to have access to information is really important. When they are able to obtain valuable information from the mobile devices which record the data, they can make decisions faster, thus more apt to make a sale for their companies.

Transceiver technology increases the speed of data transmission through the fiber deployed by enterprises in data centers. Executives can make faster decisions and maintain a competitive advantage when they have access to getting information timely. Transceivers help to support big data in data centers, and play a really important role in executives’ decision-making process. Without the use of transceivers, it’s impossible to transmit data at high speed over significant distances.

Conclusion

It’s necessary to mention that there are more than three ways that transceivers help support big data in data centers. Only three popular ways are discussed in this article. Transceivers, a key component designed in relation to the promotion of big data in data centers, are instrumental in managing big data. FS.COM, as a professional transceiver supplier, several types of transceivers supporting different data rates, like SFP+ (SFP-10G-SR mentioned above), XFP (eg. XFP-10G-MM-SR), QSFP, etc.

Interfaces for 40 GbE Architecture in Data Centers II

In the previous post “Interfaces for 40 GbE Architecture in Data Centers I”, we generally learned about the Chip-to-chip port side interface in the 40 Gigabit Ethernet architecture. And in this post, we will continue to learn the interfaces used for 40 Gigabit Ethernet. This article will focuses on the Chip-to-module direct attach interface.

Chip-to-module direct attach interface

A chip-to-module interface consists of a short PCB trace and a module connector between a port side IC and a module that is without retiming capability.

To increase the port densities to achieve the higher required bandwidth in chassis, the signal conditioning function was moved from inside of a 10 Gigabit pluggable module, such as XFI, to the port side interfaces. As a result, a new high-speed 10 GE serial electrical interface called SerDes Framer Interface (SFI) was defined by SFF MSA. SFI is applied for an interface between a host ASIC and the small form-factor pluggable module, SFP+ (the follwing picture shows the connection methods).

connection methods of chip to module

SFI is defined for both limiting and linear mode modules. In the limiting mode, SFI supports PHY connections to the limiting SFP+ optical transceivers, such as 10GBASE-SR optics (MMF 300m), 10GBASE-LR optics (SMF 10km), and 10GBASE-ER optics (SMF 40km). In the linear SPI interface, stronger signal conditioning capabilities are required to compensate for electrical dispersion. The linear SPI interface can be used with 10GBASE-LRM optics, and also the passive Direct Attach Cable (DAC) in the length from 1m to 7m, such as QSFP-H40G-CU5M DAC and EX-QSFP-40GE-DAC-50CM DAC.

To improve the port side densities in a chassis, the new XLPPI (40 Gbps Parallel Physical Interface) electrical specification was defined by IEEE 802.3. Another reason for the development of XLPPI is to address the incompatibility between the XLAUI and the QSFP+ module. Therefore, XLPPI is an interface with high port-density, supporting a direct connection to a Quad Small Form Factor Pluggable (QSFP or QSFP+) module (e.g. Brocade QSFP+ and Finisar QSFP+) without the necessity of a re-timer function.

Compared with XLAUI interfaces, XLPPI Interface is defined in 802.3ba Annex 86a as the interface between the PMA and PMD functions (where as the XLAUI dissects the PMA). The XLPPI is derived from the SFI interface and places higher signal integrity requirements on the host PMA than the XFI based XLAUI.

XLPPI is the electrical specification to both passive copper based 40GBASE-CR4 QSFP+ module and the optical modules such as the short reach QSFP-40G-SR4 optical transceiver and  QSFP-40G-LR4 optical transceiver. Therefore, currently QSFP+ modules with XLPPI interfaces support 40GBase-CR4 (both passive and active) cables and 40GBase-SR4 (either AOC or using the MPO/MTP connector) cables.

40G Transceivers: CFP and QSFP

In fiber optic communication, 40GbE transceivers are being developed along several standard form factors, such as CFP (C form-factor pluggable) transceiver, QSFP/QSFP+ (quad small-form-factor pluggable) transceiver and CXP optical transceiver. This article will introduce the three types of optical transceivers to further your understanding of 40G optics.

CFP Transceiver

CFP, short for C form-factor pluggable, is compliant with multi-source agreement (MSA) to produce a common form-factor for the transmission of high-speed digital signals. The C in the acronym “CFP” stands for the Latin letter C, which refers to the number 100 (centum), since the standard was primarily designed for 100 Gigabit Ethernet systems. In fact, CFP also supports the 40GbE. When talking about CFP, we always define it as multipurpose CFP.

CFP

The CFP form factor, defined in the MSA, supports both singlemode and multimode fiber and a variety of data rates, protocols, and link lengths, including all the physical media-dependent (PMD) interfaces contained in the IEEE 802.3ba Task Force. At 40GbE, target optical interfaces include the 40GBase-SR4 for 100 m and the 40GBase-LR4 for 10 km. There are three PMDs for 100 GbE: 100GBase-SR10 for 100 m, 100GBase-LR4 for 10 km, and 100GBase-ER4 for 40 km.

QSFP/QSFP+ Transceiver

QSFP/QSFP+ transceiver (Quad Small Form-factor Pluggable Plus) is a wildly used transceiver interfaces in data communications, connecting a network device motherboard (e.g. a switch, router, media converter and the like) with a fiber optic cable. It is a industry format that is jointly developed and supported by many network component vendors, such as Dell QSFP+, Juniper QSFP+, Mellanox QSFP+ and HP QSFP+. Additionally, QSFP supports both copper and optical cabling solutions.

Compared with the CXP, the QSFP (quad small-form-factor pluggable) is similar in size (shown as the following picture). It provides four transmitting and four receiving lanes to support 40GbE applications for multimode fiber and copper today and may serve single-mode in the future. Another future role for the QSFP may be to serve 100GE when lane rates increase to 25Gb/s.

QSFP-CXP

1000BASE-T – Upgrade Your LAN Over Copper Cable

During the deployment of bandwidth-intensive applications over local area networks (LANs), many factors should be considered, like the speed, the infrastructure, the transmission media, etc. One of the most important things is the cost. Many LANs already use CAT-5 cabling. Replace these cables with fiber optic cable might cost a lot. For some companies which might have tight budgets and must leverage their existing infrastructure, 1000BASE-T would be a nice and cost-effective way to upgrade their LAN.

1000BASE-T Cable

What is 1000BASE-T?

1000BASE-T is Gigabit Ethernet that provides speeds of 1000 Mbps (1 gigabit is 1000 megabits per second) over four unshielded twisted pairs of cabling rated at Category 5/5e or better. 1000BASE-T specification allows a segment with a maximum length of 100 meters due to signal transmission limits, which can be used in data centers for server switching, LANs, for uplinks from desktop computer switches or directly to the desktop for broadband application. One of the advantages of 1000BASE-T is cost-effective.

A Cost-Effective Solution for Gigabit Ethernet

Fiber optic cables are gradually replacing copper cables in today’s telecommunication network. However, given the high cost of replacing copper cables with fiber optic cables and the low cost and good performances of 1000BASE-T, many companies might choose the 1000BASE-T system to upgrade their network and enjoy Gigabit Ethernet over copper cables. The following text illustrates the reasons why 1000BASE-T is one of the most cost-effective high-speed networking technology available.

SFP 1000BASE-T

  • No need to replace copper cables with fiber optic cables—it is known that copper solutions havtraditionally been lower than fiber-based solutions. As many companies still use Cat 5 twisted pairs, the replacing of copper into fiber optics will cost a lot of money and time. With the application of 1000BASE-T, companies can upgrades their local area network, data centers, etc. by using their existing copper cable place which would be time-saving and cost-saving.
  • No need to change Ethernet equipment and infrastructure investments—if you replace all the copper cables into fiber optic cables, you would be forced to replace cabling located in walls, ceilings, or raised floors. And the equipment connected to the fiber links should also be updated. It would be time-consuming and high-cost task, which won’t be the best choice of some companies with tight budget or lacking of time. With 1000BASE-T, these problems would be solved easily. 1000BASE-T preserves Ethernet equipment and infrastructure investments, including the investment in the installed Category 5 cabling infrastructure.
  • Flexible 100/1000 and 10/100/1000 connectivity—1000BASE-T support data rate ranging from 10 Mbps to 1000 Mbps. Flexible 100/1000 and 10/100/1000 connectivity will be offered and will enable the smooth migration of existing 10/1000 networks to 1000 Mbps-based networks. Used in conjunction with 1000BASE-T SFP, 1000BASE-T can provide highly cost-effective shared gigabit service. Various 1000BASE-T SFP transceiver modules that can enhance the performance of 1000BASE-T systems are being provided by current vendors.

1000BASE-T is a time-saving and cost-effective solution to upgrade the LANs to have Gigabit Ethernet. With the big advantage of cost-effective, 1000BASE-T are being widely applied. As technology advanced, various products are being provided to enhance the 1000BASE-T performances, like 1000BASE-T SFP module. Fiberstore provides a wide range of telecommunication products including 1000BASE-T SFP transceivers and Category 5/5e products. You can visit Fiberstore for more detailed information about 1000BASE-T.

Why Choose Direct Attach Cable in 40G/100G Migration?

Advance technologies like Big Data and Cloud which require high speed of data rate become more and more popular. To meet the ever growing need to high speed data transmission, many data centers are migrating from 10 GbE to 40 GbE or even 100 GbE. And some are considering about the migration, during which the cost is one of the most important factors to consider. Direct attach cable also known as DAC cable is a cost effective solution during the migration to 40GbE or 100GbE.

What Is Direct Attach Cable

A direct attach cable also known as DAC is usually a fixed assembly supporting high speed data that uses a small form-factor connector module as an optical transceiver on each end of a length of cable. With significant cost-saving and power-saving benefits, direct attach cable is now being widely used in data centers for short reach applications. It can be connected to switches, servers, routers, network work interface cards (NICs), Host Bus adapters (HBAs) providing high density and high data throughput.

Why Choose Direct Attach Cable

Direct attach cable with many significant benefits can satisfy the growing need for high speed data. The main benefits of direct attached cable are described in the following text.

Cost saving: the modules on the end of direct attach cable looks like optical transceivers. However, actually they very much different from optical transceiver. These small form-factor connector modules leave out the expensive optical lasers and some electronic components. That’s the main reason why the DAC is much cheaper than optical transceiver. Direct attach cable in some case can be an alternative to optical transceivers as it eliminates the separable interface between transceiver module and optical cable. Thus, choosing DAC in some cases can save a lot of money as well as time.

Low power consumption: to identify the modules on the end and cable type to the Ethernet interface, in both active direct attach cable and passive direct attach cable a small electrical component is used, which is low cost and consumes very little power compared with optical transceiver.

Supporting high data rate: DAC can provide high speed I/O (input and output) data. The most commonly used DAC can support high data rate of 10 Gb/s and 40 Gb/s. However, as technologies advanced, some vendor can provide direct attached cable supporting 120 Gb/s, like 120G CXP Cables.

Meet small form-factor standards: the modules on each end of DAC meet small form-factor standards which means DAC inherits some advantages of the small form-factor module, like space saving. Some time there is no need to upgrade the equipment by using a DAC.

40GBASE QSFP+ Direct Attach Cable

With various benefits like abilities in data transmission and cost saving, direct attach cable is becoming increasingly popular for short distance top-of-rack (ToR) and middle-of row (MoR) data center deployments. It’s a cost-effective solution to 40G/100G migration. Currently direct attach cable are continuing to evolve to meet industry needs. Various types of directive attach cable are being provided. FS.COM as a vendor of optical components provides DAC cable assemblies including 10G SFP+ Cables, 40G QSFP+ Cables, and 120G CXP Cables.

Related Article: Use High Speed Direct Attach Cable for Data Center Interconnection