Pluggable Optical Transceiver Used in Data Centers

Today’s data centers are going through unprecedented growth and innovation as emerging optical standards and customers’ demands for higher-level networking services converge. Bandwidth, port density and low-power demands come as the main drivers that populate the deployment of fiber optic networks. And in fiber optic network implementations, pluggable optical transceiver provides a modular approach to safe-proof network design and become the ideal choice to meet the ever-changing network needs in data centers. This text just mainly introduces pluggable transceivers deployed in data centers.

A Quick Question: What Are Pluggable Optical Transceiver?

Pluggable optical transceivers are transceivers that can be plugged into routers, switches, transport gear, or pretty much any network device to transmit and receive signals. They are hot swappable while the device is operating, standardized to be interchangeable among vendors, capable of operating over many different physical medium and at different distances. For instance, pluggable optical transceiver can work through copper, through fiber optic cables available in both singlemode fibers (SMFs) and multimode fibers (MMFs), realizing 100m, 300m, 10km, 80km distance reach, etc. In addition, these hot-swappable transceivers are also able to support a wide variety of speeds, like 1Gbit/s, 10Gbit/s, 40Gbit/s, 100Gbit/s, or even higher.

Pluggable Optical Transceiver – Standards & Protocols

Just as what has been mentioned above, pluggable optical transceivers are interchangeable. These interchangeable transceivers allow a single device to operate with a wide selection of protocols and functions. Listed below are commonly-used pluggable transceiver standards and protocols.

SFP—The small form-factor pluggable (SFP) supports a wide range of protocols and rates, such as Fast and Gigabit Ethernet (GbE), Fibre Channel (FC), and synchronous optical networking (SONET) for dual and bidirectional transmission. SFP medium are available in SMF, MMF, and copper. For MMF media, there exists 1000BASE-SX port type used in 1GbE applications. Take J4858C for example, this HP 1000BASE-SX SFP can realize a maximum of 550m reach at 1.25 Gbit/s over MMF.

HP 1000BASE-SX SFP optical transceiver

SFP+—The enhanced small form-factor pluggable (SFP+) is an enhanced version of the SFP, supporting data rates up to 16Gbit/s. It was first published on May 9, 2006, and version 4.1 was published on July 6, 2009, supporting 8Gbit/s FC, 10GbE and Optical Transport Network standard OTU2. SFP+ is a popular industry format supported by many network component vendors.

XFP—The XFP (10G SFP) is a standard for transceivers for high-speed computer network and telecommunication links that use optical fiber. Its principal applications include 10GbE, 10Gbit/s FC, SONET at OC-192 rates, synchronous optical networking STM-64, 10 Gbit/s Optical Transport Network (OTN) OTU-2, and parallel optics links.

QSFP—The Quad Small Form-factor Pluggable (QSFP) is a also a compact, hot-pluggable transceiver used for data communications applications. QSFP+ transceivers are designed to carry Serial Attached SCSI, 40GbE (100G using QSFP28), QDR (40G) and FDR (56G) Infiniband, and other communications standards. They increase the port-density by 3x-4x compared to SFP+ modules. In 40GbE applications, these QSFP+ transceivers establish 40G links with distances up to 300m over MMF, and 40km over SMF. QSFP can also take copper as its media option when the required distance is short. Like QSFP-4SFP10G-CU5M, this product is the QSFP to 4 10GBASE-CU SFP+ direct attach passive copper cable assembly designed for relatively short reach, that is 5m. The image below just shows what this QSFP-4SFP10G-CU5M product looks like.

QSFP-4SFP10G-CU5M, QSFP to 4 10GBASE-CU SFP+

CFP—The C form-factor pluggable (CFP) is a multi-source agreement (MSA) to produce a common form-factor for the transmission of high-speed digital signals. The c stands for the Latin letter C used to express the number 100 (centum), since the standard was primarily developed for 100 Gigabit Ethernet systems.

Conclusion

Pluggable  optical transceivers offer distance extension solutions, allowing flexibility in network reach and easy replacement in the event of component failures. They are the answer to today’s network architecture and performance demands. FS.COM supplies various pluggable optical transceivers supporting different speeds, like SFP (J4858C), SFP+, XFP, QSFP, CFP, etc.

How Transceiver Module Helps to Support Big Data in Data Centers?

Today’s data centers need to better adapt to virtualized workloads and the ongoing enterprise transition to hybrid clouds, since business owners always rely on big date technology to get timely information and make immediate decisions. Transceiver module, one of the most critical designs in telecommunication field, is related to the promotion of big data in data centers, helping business owners get their data in real-time. This just explains the importance of being aware of the three ways in which transceivers help support big data in data centers.

Transceiver Module Facilitates High Speed Data Transfers

A growing number of enterprises are transiting to private and hybrid clouds, which drives the bandwidth and connectivity requirements. As high-speed data carrier, transceivers facilitate high speed data transfers. Enterprises that want to achieve faster transmission have to choose transceivers with high quality. There are many types of transceivers available in the market, such as SFP, SFP+, XFP, QSFP, etc. Each type of transceiver is designed to support different data rate. Capable of transmitting data at 10Gbit/s, 40Gbit/s, 100Gbit/s or even 120 Gbit/s, transceivers can realize the high-speed data transfer, ensuring bandwidth upgrades in enterprise data centers. Take 10GBASE SFP+ modules for example, these hot-pluggable transceivers (eg. SFP-10G-SR) deployed for 10 Gigabit Ethernet (GbE) applications, though designed physically small, can handle fast transmission with the maximum data rate of 10.3125Gbps.

SFP-10G-SR, handles fast transmission

Transceiver Module Promotes Data Transmission Process in Data Centers

Enterprise that need to manage big data can benefit from the use of transceivers. Data centers are places where enterprises store the barrage of data that comes from their offices. The information is usually stored in the cloud where employees and executives have access to the information in determining the actions they need to make in their organizations. The data centers need to transmit data accurately, securely, and rapidly. Transceiver technology can promote the data transmission process in data centers.

Transceiver module Promote Data Transmission Process in Data Centers

Transceiver Module Supports Big Data in Data Centers

Data centers have experienced the exponential growth as the demand for big data increases. Greater bandwidth is necessary to support many applications, like video download, live online show, and other types of data. Transceivers are a necessity in ensuring that the data is transmitted securely, expeditiously, and accurately via the fiber. Transceivers are used in conjunction with multiplexers and switches. When they work together, managing network capacity becomes an easy task.

Additionally, transceivers also have a role in companies’ sales. It’s known that big data can be accessible on mobile devices through the cloud. Transceivers are capable of facilitating the transmission from wireless cell tower base stations. Company employees like salesmen are always on-the-go to make sales, and to have access to information is really important. When they are able to obtain valuable information from the mobile devices which record the data, they can make decisions faster, thus more apt to make a sale for their companies.

Transceiver technology increases the speed of data transmission through the fiber deployed by enterprises in data centers. Executives can make faster decisions and maintain a competitive advantage when they have access to getting information timely. Transceivers help to support big data in data centers, and play a really important role in executives’ decision-making process. Without the use of transceivers, it’s impossible to transmit data at high speed over significant distances.

Conclusion

It’s necessary to mention that there are more than three ways that transceivers help support big data in data centers. Only three popular ways are discussed in this article. Transceivers, a key component designed in relation to the promotion of big data in data centers, are instrumental in managing big data. FS.COM, as a professional transceiver supplier, several types of transceivers supporting different data rates, like SFP+ (SFP-10G-SR mentioned above), XFP (eg. XFP-10G-MM-SR), QSFP, etc.

Optical Transceiver Selection Guide

As an important optical component being widely used in today’s optical network, optical transceiver has been developing rapidly. More and more vendors are providing various types of transceivers to meet the market calls. To select a matching transceiver for a given application and hardware is now an easy thing now. Many parameters should be considered. The following text is to provide the parameters should be considered during the selecting of the proper optical transceivers.

MSA (Multi-Source Agreement) Type of Optical Transceiver

A transceiver is usually used to mechanically and electrically fit into a given switch and router. Transceiver MSAs define mechanical form factors including electric interface as well as power consumption and cable connector types. There are the following types of optical transceivers according to MSA: GBIC, XENPAK, X2, XFP, SNAP12, SFP, QSFP/QSFP+, CXP and CFP.

Protocol and Data Rate

As different switch or router supports different protocol and data rate. Before selecting the transceiver needed, make sure the protocol and data rate to be supported. The following provides the most common protocol and data rate types:

  • Gigabit Ethernet: 1 GE/10GE/40GE/100GE
  • Fiber Channel: 1GFC (1.25Gbps) / 2GFC / 4GFC / 8GFC / 16GFC
  • SDH STM-1 (155Mbps) / STM-4 (622Mbps) / STM-16 (2.5Gbps / STM-64 (10Gbps)
  • Multirate (155Mbps to 2.67Gbps)
  • CPRI up to 6Gbps (for Video Transmission)
Transport Media

The most commonly used transport media are cooper, single mode fiber (SMF), Multimode fiber (MMF). Maker sure the transport media, before choosing an optical transceiver.

Transceiver “Color”

The colored transceiver commonly known as CWDM transceivers and DWDM transceivers. In CWDM or DWDM system, each channel uses a different “color” transceiver because each lambd represents a different color in the spectrum.

Equipment Compatibility

In what switch or router is the transceiver supposed to work. Now the third party transceivers are being provided. If the equipment open for third party transceiver, then the third party transceiver could be an option. However, if not, the brand, model and firmware version must be known.

IEEE Descriptions

The functions of the optical transceivers are various, thus understand the IEEE descriptions of the optical transceivers can help to select the match one quickly. The following provided are the translation of IEEE descriptions:

  • MM: multimode
  • SM: single mode
  • Base -T: “copper” SFP with electrical RJ45 interface
  • SX: SFP 850nm, MM, grey, 1GE, approx. 500m
  • LX: SFP 1310nm, SM, grey, 1GE, approx. 8km
  • EX: SFP 1310nm, SM, grey, 1GE, approx. 40km
  • ZX: SFP 1550nm, SM, grey, 1GE, approx. 70km
  • CX4: “copper” XFP with electrical IB4x connector
  • SR: SFP+ or XFP 850nm, MM, grey, 10GE, approx. 300m
  • LR: SFP+ or XFP 1310nm, SM, grey, 10GE, approx. 10km
  • ER: SFP+ or XFP 1550nm, SM, grey, 10GE, approx. 40km
  • ZR: SFP+ or XFP 1550nm, SM, grey, 10GE, approx. 80km
  • SR4: QSFP 850nm, MM, 40GE, approx. 100m
  • SR10: CFP 850nm, MM, 100GE, approx. 100m
  • LR4: CFP or QSFP 1310nm, SM, 40GE (CFP or QSFP) or 100GE, approx. 10km

Fiberstore-CWDM-TransceiverTaking the above parameters into consideration, to select a match optical transceiver would be much easier and more quickly. FS.COM, an professional optical components provider, offers a wide range of optical transceivers of high quality including SFP, SFP+, CWDM transceiver, DWDM transceivers, etc.