Fiber Optic Connector: An Important Part of Fiber Optic Termination

Fiber optics are used for a variety of applications in the photonics industry. Fiber optics are typically connectorized for convenience of mating and coupling. These connectors come in many configurations and styles. A fiber optic connector that was lower loss, lower cost, easier to terminate or solved some other perceived problem is urgently needed to the industry. As a result, about 100 fiber optic connectors have been introduced to the marketplace, but only a few represent the majority of the market. Today, Fiberstore’s Blog are going to show you these commonly used fiber optic connectors.

fiber optic connector

Fiber Optic Connector Types
Commonly used fiber optic connector types include SC, FC, LC, ST, MU, E2000, MTRJ, SMA , DIN as well as MTP & MPO etc. They are widely used in the termination of fiber optic cables, such as fiber optic pigtail, fiber optic patch cables and so on.

LC connector LC Connector (Lucent Connector) — Ferrule diameter = 1.25mm. LC connectors are licensed by Lucent and incorporate a push-and-latch design providing pull-proof stability in system rack mounts. LC connectors are available in single mode and multimode. Externally LC connectors resemble a standard RJ45 telephone jack. Internally they resemble a miniature version of the SC connector. This type of connectors are commonly used in connecting SFP Transceiver Module in Router/Switch. For example, the optic interfaces of Cisco’s SFP transceivers are all LC connectors.
SC connector SC Connector (Subscriber Connector) — Ferrule diameter = 2.5mm. The SC connector is becoming increasingly popular in single-mode fiber optic telecom and analog CATV, field deployed links. But the most commonly used field is to connect GBIC (100Base-FX) in router/switch. The high-precision, ceramic ferrule construction is optimal for aligning single-mode optical fibers. The connectors’ outer square profile combined with its push-pull coupling mechanism, allow for greater connector packaging density in instruments and patch panels. The keyed outer body prevents rotational sensitivity and fiber endface damage. Multimode versions of this connector are also available. The typical insertion loss of the SC connector is around 0.3 dB.
ST connector ST Connector (Straight Tip) — Ferrule diameter = 2.5mm. ST connector’s high-precision, ceramic ferrule allows its use with both multimode and single-mode fibers. The bayonet style, keyed coupling mechanism featuring push and turn locking of the connector, prevents over tightening and damaging of the fiber end. The insertion loss of the ST connector is less than 0.5 dB, with typical values of 0.3 dB being routinely achieved. ST connector is used extensively both in the field and in indoor fiber optic LAN applications, eg. ODF (optical distribution frame). In addition, ST connector is also used to connect GBIC transceiver, usually for 100Base-F.
FC connector FC Connector (Ferrule Connector) — Ferrule diameter = 2.5mm. The FC has become the connector of choice for single-mode fibers and is mainly used in fiber-optic instruments, SM fiber optic components, and in highspeed fiber optic communication links. This high-precision, ceramic ferrule connector is equipped with an anti-rotation key, reducing fiber endface damage and rotational alignment sensitivity of the fiber. The key is also used for repeatable alignment of fibers in the optimal, minimal-loss position. Multimode versions of this connector are also available. The typical insertion loss of the FC connector is around 0.3 dB.
MU connector MU Connector (Miniature Unit) — Ferrule diameter = 1.25mm. MU is a small form factor SC. It has the same push/pull style, but can fit 2 channels in the same Footprint of a single SC. MU was developed by NTT. It is a popular connector type in Japan. Applications include high-speed data communications, voice networks, telecommunications, and dense wavelength division multiplexing (DWDM). MU connectors are also used in multiple optical connections and as a self-retentive mechanism in backplane applications.
MTRJ connector MTRJ Connector (Mechanical Transfer Registered Jack) — Ferrule diameter = 2.45×4.4 mm. MT-RJ is a duplex connector with both fibers in a single polymer ferrule. It uses pins for alignment and has male and female versions. Multimode only, field terminated only by prepolished/splice method.
E2000 connector E2000 Connector — Ferrule diameter = 2.5mm. E2000 connector is a plastic push-pull connector developed by Diamond. The E2000 was developed as an improvement on the SC connector design by having: a latch that retains the connector, a dust cap always in place, and a smaller size. The built in dust cap always stays on the connector protecting the ferrule and blocking harmful laser light when the connector is disconnected. E2000 is available for Singlemode and Multimode applications.
sma SMA Connector (Sub Miniature A) — Ferrule diameter = 3.14mm. Due to its stainless steel structure and lowprecision threaded fiber locking mechanism, this connector is used mainly in applications requiring the coupling of high-power laser beams into large-core multimode fibers. Typical applications include laser beam delivery systems in medical, bio-medical, and industrial applications. The typical insertion loss of an SMA connector is greater than 1 dB.
DIN connector DIN Connector — Ferrule diameter = 2.5mm. DIN connector is a metal screw on connector which is developed by Siemens. Deutsch Telecom mainly uses it. This is a good connector to use where the ruggedness of a metal screw on connector is required but
where there is not enough space for a FC Connector.
mtp&mpo connector MTP and MPO Connector — MTP and MPO are compatible ribbon fiber connectors based on MT ferrule which allow quick and reliable connections for up to 12 fibers. They are intended for installations that require many fiber connections. Up to 12 fibers in a ribbon are stripped to 125um cladding and inserted into 250um spaced parallel grooves. The ferrule also includes two 0.7mm diameter holes, running parallel to the fibers on the outer side of the ferrule. These two holes hold precision metal guide pins which align the fibers with tight tolerances. MTP and MPO connectors feature male and female connector design. Male connectors have two guide pins and female connectors do not. Both connector types need an adapter to mate a pair of male and female connectors. Because MTP and MPO connectors are trying to align so many fibers at once, their coupling loss are typically bigger than single fiber connectors.

 

History of Different Connector Types
The ST connector is the oldest design of the connectors still in common use. It was the first connector to use a 2.5mm ferrule. The FC and DIN connectors improved on the ST connector by: isolating cable tension from the ferrule, keying the location of the ferrule for angle polishing, and threading onto the adapter for a more positive connection. The SC connector was then developed to eliminate having to screw and unscrew the connector every time and to reduce the cost by molding instead of machining the connector. A big advantage of this push/pull connector over a FC connector is that less room is required between connectors on patch panels. The E-2000 was developed as an improvement on the SC connector design by having: a latch that retains the connector, a dust cap always in place, and a smaller size. As patch panel densities increased the LC and MU connectors were developed to reduce the space required for connectors on patch panels. Both of these connectors use a 1.25mm ferrule. The MT-RJ connector was then developed to put transmit and receive fibers into one connector. This was the first connector to use the MT ferrule design as opposed to a 2.5mm or 1.25mm diameter ferrule. The MTP connector was then developed to increase fiber density even more. The MTP currently has 12 fibers in its MT ferrule however a 24-fiber version is under development.

There are many more influences that lead to the development of these different commonly used connector types. This is why all of the different connector types exist. In fact, there are not only these connector types. A multitude of specialty connectors are launched to the market for different application.

Connector Endface Preparation
Once the optical fiber is terminated with a particular connector, the connector endface preparation will determine what the connector return loss, also known as back reflection, will be. The back reflection is the ratio between the light propagating through the connector in the forward direction and the light reflected back into the light source by the connector surface. Minimizing back reflection is of great importance in high-speed and analog fiber optic links, utilizing narrow line width sources such as DFB lasers, which are prone to mode hopping and fluctuations in their output.

polishing type

Flat Polish — a flat polish of the connector surface will result in a back reflection of about -16 dB (4%).
PC Polish — the Physical Contact (PC) polish results in a slightly curved connector surface, forcing the fiber ends of mating connector pairs into physical contact with each other. This eliminates the fiber-to-air interface, there by resulting in back reflections of -30 to -40 dB. The PC polish is the most popular connector endface preparation, used in most applications.
UPC/SPC Polish — in the Super PC (SPC) and Ultra PC (UPC) polish, an extended polishing cycle enhances the surface quality of the connector, resulting in back reflections of -40 to -55 dB and < -55dB, respectively. These polish types are used in high-speed, digital fiber optic transmission systems.
APC Polish — the Angled PC (APC) polish, adds an 8 degree angle to the connector endface. Back reflections of <-60 dB can routinely be accomplished with this polish.

Article Source: http://www.fs.com/blog/fiber-optic-connector-an-important-part-of-fiber-optic-termination.html