Field Terminated vs. Pre-Terminated: Which Do You Prefer?

Fiber optic termination refers to the addition of fiber optic connectors, such as LC, SC, FC, MPO, etc. to each fiber in a fiber optic cable. It is an essential step in fiber optic connectivity. Nowadays, two major termination solutions including field terminated and pre-terminated (factory pre-terminated) are used to achieve the fiber termination. For these two solutions, which do you prefer?

Field Termination

Field termination, as its name suggests, is to terminate the end of a fiber in the field. Field terminated solutions including no-epoxy, no-polish (NENP), epoxy-and-polish (EP) connectors and pigtail splicing are applied on the majority of fiber optic cables today. Field termination not only requires various of steps and tools, but also the proper training and skills of technicians to properly terminate the fiber.

field termination

Note: pigtail splicing is accomplished by fusing the field fiber with a factory-made pigtail in a splice tray.

Factory Termination

Factory termination, also called factory pre-termination, refers that cables and fibers are terminated with a connector in the factory. In fact, factory termination has the same procedures as field termination, but all the steps are taken at the manufacturers’ facility. The pre-terminated solution mainly including the fiber patch cables, the pre-terminated cassettes and enclosures features superior performance, good consistency, low insertion loss and good end-to-end attenuation in the system with the design of high-quality connector end-face geometry. In addition, by reducing the cumbersome process and tools, factory pre-terminated solution is easier to install and requires less technical skills.

factory pretermination

Field Terminated vs. Pre-Terminated

Field terminated solution and pre-terminated solution, with different strengths and weaknesses, are likely to attract different types of users. As technicians face important trade-offs in deciding which method to choose, we are going to provide a detailed comparison between them from several aspects in this section.

Field terminated solution needs a series of preparations before termination. Procedures including stripping the cable, preparing the epoxy, applying the connector, scribe and polishing, inspection and testing are required. Additionally, tools and consumables such as epoxy and syringes, polishing products, cable installation tools, etc. are also necessary. Conversely, the pre-terminated solution doesn’t need any cable termination preparation, no connector scrap, no cumbersome tool kits or consumables and no specialized testers needed.

field terminated preparation

Cost & Time Spent
Traditional field terminated solution has the lowest material cost with no pre-terminated pigtails or assemblies required, but with the highest labor cost as it takes much longer to field install connectors. For pigtail splicing, though the factory pre-terminated pigtails cost less but the higher labor rates are typically required for technicians with fusion splicing equipment and expertise, or fusion splicing equipment and expertise must be on hand. The pre-terminated solution typically costs more than other options on materials. However, it greatly reduces the labor cost. Because less expertise and resources are required of installation staff.

As mentioned above, field terminated solution takes more time in preparation and connectors field installation. In contrast, with pre-terminated solution, connectors are factory terminated and tested in a clean environment with comprehensive quality control processes and documented test results that allows for immediate installation, saving up to 70% on installation time.

To sum up, mainly with time and labor saving, the pre-terminated solution can help users save cost at an average of 20-30% over field terminated solutions.

In terms of performance, the pre-terminated solution is more stable than the field terminated. Factory pre-terminated assemblies with documented test results are generally available in lower insertion loss and better performance. Field terminated solution works weaker in stability. Because there are many uncertainties in field installation. When for high density applications, the pre-terminated cable assemblies offer better manageability and density which are more suitable for high-density connectivity than the field terminated practices.

Field terminated solution, as a traditional termination method, is still used in many application fields. But now, for the case that cable distances are less than 100 meters and cable lengths are pre-determined, pre-terminated solution is more preferred by users. The pre-terminated solution is widely used for cross-connect or interconnect in the MDA (Main Distribution Area), EDA (Equipment Distribution Area), or other areas of the data centre, as well as for fixed lengths in the interbuilding or intrabuilding backbones.

Warm Tips: Click here to view the Field Termination vs. Factory Termination in LAN application.


Field terminated and factory pre-terminated solutions play a very important role in fiber optic termination, though they have different features. Choose the right method for your network according to your plan. For data center applications, FS.COM highly recommends you the pre-terminated solution as it can help keep costs down and network up, and meets the demands on high density. Contact us over for detailed information.

Guide to Fusion Splicer Selection

Optic fiber is now widely applied to networks around the globe. When it comes to actual operation, connecting fibers is a necessary task. And fusion splicer is an effective tool for fiber optic splicing. But choosing the right type of fusion splicer is still a challenge. In this article, we will talk about how to find the most matching fusion splicer.

Before discussing about different types of fusion splicer, let’s first have a look at the working principle and specific function of a fusion splicer. The fusion splicer is the device that uses heat to melt the ends of two optic fibers and combines them together into one fiber. By using the fusion splicer, the joint is permanent so that light signals can pass from one fiber to another with little link loss. The heating source of a fusion splicer can be a laser, a gas flame, a tungsten filament or a electric arc. And the most popular heating source at present is electric arc.

Nowadays, there are two types of fusion splicer according to different aligning systems. One is called the core alignment fusion splicer, the other is cladding alignment fusion splicer. If you can figure out the differences between these two types of fusion splicer, finding a right fusion splicer is no longer a problem.

Core Alignment Fusion Splicer

Core alignment is the most welcome fusion splicing technology at present. The splicer combines the image and light detection systems which can view the fibers cores in order to measure and monitor core position. Fiber cores are put in V-grooves and are aligned horizontally (X-axis), vertically (Y-axis) and in/out (Z-axis). The type of fusion splicer is adaptable for all kinds of fibers, such as single-mode or multimode fiber, good or bad fiber and splicing old fiber to new fiber. It is much more expensive but provides a more precised alignment.


Cladding Alignment Fusion Splicer

Cladding alignment is also called as passive alignment or fixed V-groove type. This type of fusion splicer relies on the accurate pre-alignment of fiber V-grooves that grip the outer surface or cladding of the fiber. Fiber cores are adjusted inwards and outwards. This type of fusion splicer is only available for multimode fiber or good single-mode fibers. As to cladding alignment fusion splicer, the cost is lower and alignment is faster, but its demand for the quality of fiber is higher or else will cause a lot of losses.


Suggestions For Fiber Optic Splicing

Though the two types of fiber optic splicing are different, the methods for better splicing are common. Here are some suggestions for fiber optic splicing:

1. Clean the fusion splicer before splicing. Any invisible contamination will cause tremendous problems when splicing the fibers.

2. In order to increase the alignment speed for fusion splicer, it is important to maintain and operate other tools, such fiber cleaver. A good cleaving will save time for splicing and decrease fiber loss.

3. Make sure the fusion parameters are adjusted minimally and methodically. The changes of parameters will also generate problems for your desired setting.


Selecting a suitable fusion splicer is beneficial to the splicing process. You may consider your needs and affordable cost to find the right fusion splicer. Core alignment fusion splicer has a better performance but a higher price than cladding alignment fusion splicer. Please choose your ideal fusion splicer wisely and do not forget to follow the normative operation for your splicing.

Make the Right Choice of Splicing

Fiber splicing is used to permanently join two optical fibers where no additional changes are expected to be made to those fibers at that juncture. Compared with joints by connectors, fiber splicing typically results in lower light loss and back reflection.

There are two methods of fiber optic splicing: fusion splicing and mechanical splicing. Both of the two are functioning the same. However, they have their own advantages and disadvantages, which should be acknowledged before choosing of the methods of splicing which best fit the economic and performance objectives.

Fusion Splicing VS. Mechanical Splicing

The following text will make a comparison between mechanical splicing and fusion splicing from several aspects (process, time requested, performance and cost) to find the best choice of splicing.

The biggest difference between mechanical splicing and fusion splicing can be figured out by their literally meaning. Mechanical splicing is mechanically joining the fibers ends together which is quick and effective. While fusion splicing is a method of fusing fibers together using arc welding which is fairly complex and requires much more skill than mechanical splicing.

Process: The first three steps of mechanical splicing and fusion splicing before connecting the fibers ends are generally the same.
  • Step one: strip the protective coatings, jackets, tubes, strength members, etc. leaving only the bare fiber showing.
  • Step two: cleave the fiber with a fiber optic cleaver. The cleaved end for fusion splicing must be mirror-smooth and perpendicular to the fiber axis to obtain a proper splice. As to mechanical, the cleaving process is identical to the cleaving for fusion splicing but the cleave precision is not as critical.
  • Step three: clean the fiber.
  • Step four: after cleaning the fiber, the connecting step starts.
    For fusion splicing, fusing fiber contains alignment and heating. Once properly aligned the fusion splicer unit then uses an electrical arc to melt the fibers, permanently welding the two fiber ends together.
    Mechanical splicing does not need heating. Simply position the fiber ends together inside the mechanical splice unit. The index matching gel inside the mechanical splice apparatus will help couple the light from one fiber end to the other.
  • Step five: protect the fiber
    Fusion splicing—using heat shrink tubing, silicone gel and/or mechanical crimp protectors will keep the splice protected from outside elements and breakage.
    Mechanical splicing—the completed mechanical splice provides its own protection for the splice.


Time Requested: mechanical splicing is fast and effective, which is suitable for some emergency situations. However, fusion splicing is more skilled and need more time to be finished.

Performance: with mechanical splicing, the fibers usually have loss of 0.3dB. However, with fusion splicing, the fibers generally have a loss of 0.1dB and the fiber splices are usually stronger.

Cost:mechanical splicing has a low initial investment ($1,000-$2,000) but costs more per splice ($12-$40 each). While the cost per splice for fusion splicing is lower ($0.50-$1.50 each), the initial investment is much higher ($15,000-$50,000 depending on the accuracy and features of the fusion splicing machine being purchased). The more precise you need the alignment (better alignment results in lower loss) the more you pay for the machine.

Many companies now invest fusion for networks, especially for long haul single-mode networks. However, they also use mechanical splicing for shorter, local cable runs. Consider the requests for performance quality, time, situations and the capacity of economics before choosing the fittest method of splicing.