Jan 10

Cable Manager Brings Cable Routing Back to Life

Along with the trend for high density connectivity in server rooms or data centers, cable management has become more difficult than ever before. Cable mess often occurs on the racks causing tremendous problems for later installation and cable maintenance. Network installers are searching for effective tools to make structured cabling. Cable manager appears to be an optimal management accessory. Today, many places adopt this component for cable routing in a simpler way. This article aims to introduce some cost-effective cable manager solutions for you.

cable manager

Benefits of Cable Manager

With the help of cable manager, cables are perfectly protected from strain to ensure the network reliability. Besides, cable manager also ensures the data integrity in a more organized way. Space is rationally used with a safer cable routing. It is pretty simple to install the cable manager and use it to arrange large amount of cables. The cost of cable manager is always affordable which is a necessary invest to avoid huge loss caused by cable mess in the future.

Cable Manager Solutions
Orientations

Cable manager can be used for either horizontal direction or vertical direction. The horizontal cable manager allows neat and proper routing of cables from devices in racks. It is important to make sure the rack height and cable density is supported by the cable manager. Typically, 1U and 2U horizontal cable managers are more popular in use. You also need to ensure that the horizontal cable manager is not obstructing devices in racks and cables are free to add or remove. Another solution is vertical manager. It can arrange the slack patch cables in vertical space allowing for 50 percent growth of cables and eliminating the use of horizontal cable managers.

cable manager orientations

Styles

Cable manager usually has various styles. First is the type with finger duct. The flexible finger ducts can maximize the care and protection of the equipment and cables. The holes are easy to pass through for convenient cabling. Second type has the D-rings and is available for horizontal, vertical or diagonal positions in cable management. Third is the cable manager with brush slots. This unique design can protect the cable from most contaminants and effectively increase the air flow at the same time. Last cable manager style is especially used for telephone line. It is often constructed by a base within two 110 cable management blocks.

cable manager styles

Structure

Structures of cable manager can be divided into single sided and dual sided types. Single sided manager provides a convenient cable run between equipment and racks, while dual sided manager supports patch panels by keeping different cables separate for better distinction.

cable manager structure

Material

Generally speaking, cable manager can be made of three kinds of materials as plastic, metal and semimetal. Plastic and metal are the most common materials. Plastic cable manager is definitely lighter in weight for easier installation. Metal cable manager is more solid to protect the cables from any damage.

Conclusion

In summary, cable manager is now widely used for cable routing in racks. Having a structured cabling is beneficial to future management of cables. It’s never too late to sort out the cables if you want your network to achieve a higher performance for data transmission. FS.COM provides all kinds of cable managers mentioned above. If you are interested, please visit www.fs.com for more information.

Dec 16

Different Kinds of Cable Lacing Bars for Cable Management

Cable lacing is a method widely used for cable management. For applications in telecommunication, navy, and aerospace, it is often used for tying cables in an organized sequence. Traditionally, cable lacing will use a thin cord to bind together a group of cables with a series of running lockstitches. Today, cable lacing bars and cable ties are typically used to perform cable lacing. Cables can be bound by the cable ties onto the cable lacing bar. Of course, cable lacing bars also have different shapes to meet different cabling demands. This article will guide you to explore the world of cable lacing bars.

cable lacing bars

Introduction to Cable Lacing Bars

Cable lacing bars or lacer bars are made of metal designed to mount above, below, behind, or in front of your network devices. They are often seen in racks (between switches and patch panels) or enclosures. The pressure of cable connections is greatly relieved by the support of cable lacing bars. Installing the cable lacing bar is pretty easy. Only several screws are needed to fasten each end of the bar onto the rack. The width of cable lacing bar is the standard 19 inches, but the height is usually optional of 1U or 2U.

Benefits of Cable Lacing Bars

Why are cable lacing bars so popular for cable management? Here lists some advantages of using the assemblies.

  • Point 1, cable lacing bars are space-saving. The bars use less than one U space, or none at all if mounted in front of or behind equipment. Thus, the valuable U space is saved for other network installation needs.
  • Point 2, cable lacing bars provide numerous cable lacing points. Almost entire length of the bar is neatly covered with lacing slots, which allows for easy cabling along the whole bar.
  • Point 3, cable lacing bars relieve the strain of cables. When large amounts of cables are installed in the rack, cable stress will also increase accordingly. Using cable lacing bars can relieve cable stress and avoid pulling cables when routing them from one side of a rack to the other.
  • Point 4, cable lacing bars promotes good bend radius. If bend radius of fiber cables is well-protected, risks like slower data speeds and broken cables will no longer exist.
Six Types of Cable Lacing Bars

In general, there are six types of cable lacing bars. Each one is designed for a specific cabling environment. From the descriptions below, you can know which one is the perfect solution for your application.

Round lacer bars are used for individual or a small amount of horizontal cables. The rod has flattened ends and its diameter is 1/4 inch.

round-lacer-bar

When lacing small bundles or individual cables off the rear of equipment, patch panels and other components, round lacer bars with offset are used to relieve cable stress from the connections. Appropriate offset should be selected based on the distance from the rear of equipment to the rack rail.

round lacer bar with offset

Square lacer bars are suitable for cable routing at the rear of equipment. They are also used for vertical or horizontal cable lacing. Similarly, they are still designed with 1/4” diameter rod and flattened ends.

Square Lacer Bar

L-shaped lacer bars are much stronger and provide fixed lacing points. More cables can be supported by this type of bar. You should also mind the distance from the rear of equipment to the rack rail for offset choosing.

L-Shaped Lacer Bars

90 degree bend lacer bars are special for the 90 degree bend which provides a full-width support. They can also be used for clearance around components that extend past the rear rack rail.

90 Degree Bend Lacer Bar

Horizontal lacer panels are typically used for large lacing amounts of cables or mounting devices. They have large flanges, numerous lacing points and more surface for mounting.

Horizontal Lacer Panel

Conclusion

Since cable management takes an important role in structured cabling, cable lacing bars are an ideal solution for efficient and safe cable routing. Choosing the right type of cable lacing bar is also necessary for making the best use of it. Thus, you’d better choose wisely and consult the professionals if needed.

Nov 30

How to Terminate Bare Fiber With Fiber Optic Connector?

There are usually two ways for fiber optic termination. Bare optic fiber can be either spliced with another fiber for a permanent joint or connected with fiber optic connector for a temporary joint. When using the fiber optic connector, we can easily install or uninstall the cable for various applications. This type of termination is more flexible and simple to operate. It is also time-saving to use fiber optic connectors for cable connectivity. However, do you know the right process to terminate bare fiber with fiber optic connector? This article will guide you step by step.

Common Fiber Optic Connectors

Let’s start from the fiber optic connectors. Choosing the right kind of connector for your termination is extremely important. In today’s market, four types of fiber optic connectors are widely used for terminating single fibers. They are LC, SC, ST and FC connectors. LC connector has a 1.25mm ceramic ferrule which is only half the size of other connectors. It’s a snap-in connector usually used for high-density applications. SC connector uses a 2.5mm ceramic ferrule and also features a snap-in connection for quick cable patching. Different from other connectors, ST connector uses a bayonet twist-lock connection with 2.5mm ferrule. Moreover, FC is a screw type connector with 2.5mm ferrule but is becoming less popular than LC and SC connectors.

common-fiber-optic-connector

Connector Polish Styles

When terminating the optic fiber with connector, you should also decide the polish type if the connector is not polished in advance. Generally, connector end face will be polished to minimize back reflection of light. Using the mated polish styles, light can propagate through connectors with lower fiber loss. There are four types of polish styles – flat, PC, UPC and APC polishes. Among them, UPC and APC types are more popular in the industry. The major difference between UPC and APC connectors is that the APC type is polished at an 8-degree angle while UPC has no angle, but they are both slightly curved for better core alignment. As for the color, UPC connector is usually blue and APC connector is green.

upc-apc-polish

Important Precautions

Fiber optic cable is very fragile and sensitive to contamination, thus we need to pay more attention to the precautions before starting termination. Here lists some general precautions as a reference:

  • Always keep dust cap on unused connectors. Store spare dust caps in a dust free environment.
  • Remember to clean the connector and fiber before termination.
  • Make sure there is no laser light in the fiber during termination process.
  • Do not bend the optic fiber at a radius less than 25 mm.
Termination Process

When everything is ready, we can begin the fiber optic termination. The followings are the specific steps.

  • Step 1, measure and mark the cable jacket to the desired length(usually 35 mm). Place jacket stripper on mark and squeeze gently until cutter closes. Pull the cut section off the cable.
  • Step 2, measure and mark kevlar to the desired length(usually remain 7 mm). Use scissors to cut away extra kevlar.
  • Step 3, measure and mark the buffer to the desired length(usually remain 16 mm). Strip the buffer in several small lengths to avoid fiber damage.
  • Step 4, use a lint-free, alcohol-soaked tissue to clean the fiber.
  • Step 5, fill the syringe with adhesive, and slowly inject the adhesive into the ceramic tip.
  • Step 6, gently insert the fiber into the connector and put the connector components together.
  • Step 7, place the connector in the polishing disk. Put it on the polishing film, and lightly polish the connector for 8 to 10 times.
  • Step 8, mission complete! Give it a try on your equipment.

fiber-optic-termination

Conclusion

Bare fiber terminated with fiber optic connectors greatly eases the stress for cable installation. It is always recommended to turn to the professionals for help when doing fiber optic termination.

Nov 09

Have You Used Fiber Optic Wall Plate for FTTx Applications?

Did you notice the square object with jacks installed on the wall before? It is often called as wall plate. There is a variety of wall plates used in everyday life. Almost every room will have one to enable convenient cable deployment inside buildings and houses. As for FTTx applications, fiber optic wall plate is an indispensable component to keep fiber optic link away from dust and damage. This article will mainly give some details about fiber optic wall plate.

fiber-optic-wall-plate

What Is Wall Plate?

First, let’s get to know more about the basics of wall plate. Wall plate, also called as wall outlet, workstation outlet or station outlet, is a flat plastic or metal plate that usually mounts in or on a wall (sometimes may be mounted in floors or ceilings). A wall plate has one or more jacks. A jack refers to the connector outlet employed for physical and electrical connection to the network cabling system. According to different networks, wall plates is divided into two types as fiber optic wall plates and copper wall plates. Since optical network has been leading the world trend, today we will get to know more about fiber optic wall plates.

Types of Fiber Optic Wall Plates

Fiber optic wall plate is designed to establish the connection between two fibers. Based on different adapters, fibers, port counts and port orientations, fiber optic wall plates have many classifications.

Classified by Adapter

There are typically four types of fiber optic connectors used in optical network, therefore the fiber optic adapters installed on the fiber optic wall plates are also different. LC, SC, FC and ST adapters are the common types. When you need to find a matching fiber optic wall plate, just check your fiber connector to see if it is the same type as the wall plate.

adapter-type-of-wall-plate

Classified by Port Count

As for port count of the fiber optic wall plate, a typical wall plate holds up to four ports. For individual homes, sing-port type is mostly used for FTTH network. But for the office buildings, multi-port type is required for FTTD applications. In addition, if other ports are aimed for different applications, the ports can be made as hybrid ports with mixed types of adapters.

port-count-of-wall-plate

Classified by Port Orientation

Port orientation is another way to divide fiber optic wall plates. Using the right orientations can provide fiber links better protection under different environment. Three common types of port orientations are straight, box-shaped and angled.

port-orientation-of-wall-plate

Classified by Fiber

Fiber optic cables are made of different types of fibers. In order to satisfy the demands for all kinds of fiber cable deployment, fiber optic wall plates are also distinguished by single-mode fibers of OS2, and multimode fibers of OM1, OM2, OM3 and OM4. Moreover, single-mode fiber optic wall plate is used for most FTTx projects.

How to Install Wall Plate?

As a reference, here are the recommended steps for installing box-shaped wall plates on the wall:

  • Step 1, determine the location of the new cabling wall plate. Use a pencil to mark a line indicating the location for the top of the wall plate.
  • Step 2, use the hole template to trace the outline of the hole to be cut onto the wall with a pencil. Keep the top of the hole aligned with the mark made in step 1.
  • Step 3, follow the lines and use a drywall keyhole saw to cut out a hole.
  • Step 4, insert the wall plate into the hole. If it won’t fit in, trim the sides of the hole with a razor blade or utility knife.
  • Step 5, secure the wall plate by screwing the box to the drywall or by using the friction tabs.
Conclusion

Fiber optic wall plate is an important part for FTTx applications. Selecting the right one from so many types of wall plates is also a task. All the aspects for your project should be taken into consideration. FS.COM is a place where you can find different types of fiber optic wall plates. You are welcome to get more detailed information in there.

Oct 28

An Easy Guide to MPO/MTP Polarity

Nowadays, many data centers are migrating into the 40G and 100G transmission. To prepare for this change, MPO/MTP technology is applied to meet the requirements of high density patching. Typically, a fiber optic link needs two fibers for full duplex communications. Thus the equipment on the link should be connected properly at each end. However, high density connectivity usually requires more than two fibers in a link, which makes it more complex to maintain the correct polarity across a fiber network, especially when using multi-fiber MPO/MTP components for high data rate transmission. Therefore, many technicians would prefer to use pre-terminated MPO/MTP components designed with polarity maintenance for easier installation. This article will specifically guide you to understand the polarity of MPO/MTP products and the common polarization connectivity solutions.

What Is Polarity?

Keeping the right polarity is essential to the network. A transmit signal from any type of active equipment will be directed to the receive port of a second piece of active equipment and vice versa. Polarity is the term used in the TIA-568 standard to explain how to make sure each transmitter is correctly connected to a receiver on the other end of a multi-fiber cable. Once the component is connected to the wrong polarity, the transmission process will be unable to go on.

Structure of MPO/MTP Connector

When discussing about the polarity, MPO/MTP connector is an important component for you to know. An MPO/MTP connector has a key on one side of the connector body. There are two positions of the key – key up or key down. Key up position means that the key sits on top. When the key sits on the bottom, it is the key down position. Moreover, the fiber holes in the connector are numbered in sequence from left to right named as P1 (position 1), P2, etc. Each connector is additionally marked with a white dot on the connector body to designate the P1 side of the connector when it is plugged in. The MPO/MTP connector can be further divided into female connector and male connector. The former has no pins while the latter has two pins on the connector. The following picture shows the basic structure of MPO/MTP connector.

structure-of-mpo-connector

Connecting Methods of A, B, C

The TIA standard defines two types of duplex fiber patch cables terminated with LC or SC connectors to complete an end-to-end fiber duplex connection: A-to-A type patch cable is a cross version and A-to-B type patch cable is a straight-through version. Based on this, there are three polarity connecting methods for MPO/MTP products. Here will introduce them in details.

duplex-patch-cable

Method A is the most straight-forward method. It uses straight-through patch cords (A-to-B) on one end that connect through a cassette (LC-to-MPO or SC-to-MPO depends on what the equipment connector is), a straight-through MPO/MTP key up to key down backbone cable and a “cross-over” patch cord (A-to-A) at the other end.

method-a

Method B is the “cross-over” occurred in the cassette. The keys on the MPO cable connectors are in an up position at both ends, but the fiber that is at connector P1 in one end is in P12 at the opposite end, and the fiber that is in P12 at the originating end is in P1 at the opposing end. Only A-to-B type patch cord is needed for this method.

method-b

Method C is the most complicated. There is pair-wise “cross-over” in the backbone cable. A-to-B patch cords are used on both ends. The cassette uses MPO/MTP key up to key down and the backbone cable is pair-wise flipped so P1, P2 connects to P2, P1 and P3, P4 connects to P4, P3, etc.

method-c

Conclusion

Knowing the polarity of MPO/MTP system helps you better upgrade the 40G and 100G networks. According to different polarity methods, choosing the right MPO/MTP patch cables , connectors and cassettes will provide greater flexibility and reliability for your high density network.

Oct 03

Considerations for Setting up a Small Server Room

Generally speaking, data center is designed to keep the continuous operation of computer servers in an entire building or station. Likewise, server room is also devoted to this purpose but with a much smaller space. If you are only running a small business, then a small server room is enough. But you should not think that a small server room does not need proper building plan. Actually, having a solid design is very necessary to prevent future headaches. Well-organized server room ensures the effectiveness and viability of your business. This article will provide you with some considerations for setting up a small server room.

server-room

Select Right Sized Rack

With the growth of company, equipment may pile up day by day. It is dangerous to expose these equipment randomly to the working environment. A minor accident like coffee spill or stumble can cause great loss. Gladly, using server racks will effectively solve these unnecessary problems. But how to choose the suitable racks? Most importantly, server racks with sufficient inner space is beneficial to future equipment expansion. Today, server racks are usually in free-standing style or wall-mounted style. But you need to remember that no matter which type you choose, following the installation instructions can secure your racks from rack movement which may cause further disruption and damage.

server-racks

Isolate Servers to Prevent Noise

If budget permits, having a separate server room can both effectively reduce the equipment noise and secure the equipment from theft, physical tampering, and accidents. However, small company may have no choice but to place the rack in the corner of the room. Therefore racks with sound-dampening properties are welcome to be set up within such small areas. Completely soundproofing is impossible, but overall sound reduction can be achieved.

Get Control of the Heat

High temperature in your server rack will dramatically shorten equipment lifespan or even lead to crashes or outages. For the safety of the equipment, environment and company, you need cooling strategies to control the heat. Installing air-conditioning units is a good way to keep your equipment cool and lower the surrounding temperature. Also, a structured cabling will contribute to the heat control.

Keep Good Cable Management

Do not regard cable management as an unnecessary trifle. Sometimes it is the hidden danger in the future. You’d better keep good cable management right from the start. Properly bundling cables together behind equipment allows easier access to servers. When bundling your cables, it’s common practice to bundle by server and then group those bundles together. Related tools such as cable ties can be used to support the management process.

good-cable-management

Use Labels to Mark Everything

Another tip for managing your sever room in good order is to label all the cables. In this way, you can easily identify the right cable within a short time. Other accidents like systems being unplugged or restarted without warning can also be prohibited. When labeling your cables, you should include the information of where the cable connects to and from and a unique ID identifying the cable. Nowadays, many types of cable ties are available with the marking function.

Conclusion

Server room is an essential part of your company which contains all the important pieces that keep your business operating smoothly. Setting up a nice server room can keep your equipment away from damage and increase the working efficiency. Of course, if you are not professional, consulting a specialist for help is always recommended.

Aug 30

Different Kinds of Cable Tie Solutions – Which Do You Prefer?

When you first saw a cable tie, you might feel nothing special about it. It’s just a tie for holding cables together, what more could it be? But the fact is that if you want to completely get rid of messy cables, cable ties are of great importance. They are generally inexpensive, and can be ordered in various colors and sizes. There are many types of cable ties on the market. Different types are made for various applications. Using the right cable tie can speed up your working efficiency. This article will introduce some common cable tie solutions. Maybe one of them is perfect for your project.

Self-locking Cable Tie

Self-locking cable tie has the classical oval lock structure for easy installation. It is the most common cable tie consisting of a flexible nylon tape with an integrated gear rack, and on one end a ratchet within a small open case. With a good locking design, cable tie can provide firm locking for the cables. This kind of cable tie is shorter and thinner for small spaces and light wire management. Its curved tip is easy to pick up from flat surfaces and allows faster initial threading to speed installation.

Self-locking-cable-tie

Stainless Steel Cable Tie

Stainless steel cable tie is used when there is liquid involved and when extreme temperatures are involved. This cable tie can withstand temperature ranging from -100 to +1000 degrees Fahrenheit. The stainless steel cable tie has a tensile strength of 100 lbs. And it has the capability to endure most chemicals that will cause corrosion. It can be used for the most extreme environment or where additional strength, security and fire resistance are required.

Stainless-steel-cable-tie

ID Marker Cable Tie

ID marker cable tie or identification cable tie features a large marker area for the imprinting or handwriting of cable assembly numbers and other vital information, making cable and wire identification in an extensive range of applications a fast and easy task. Whenever cable colors are not enough for cable identification, ID marker cable tie plays a part.

ID-marker-cable-tie

Mount Head Cable Tie

Mount head cable tie combines the zip tie and mounting eyelet together. It allows you to bundle cables and then mount them to a surface using screws, nails, clamps or clips. Surfaces including walls, ceilings, server racks, trailers, vehicle chassis, and other areas are able to handle the cables easily with mount head cable tie.

Mount-head-cable-tie

Releasable/Reusable Cable Tie

Releasable cable tie is actually reusable nylon self-locking cable tie. The common nylon cable tie can only be used once. If you need to re-bundle or rearrange the cables, then releasable cable tie is your best choice. By pressing the latch on the tough of cable tie, it can be easily released from the cables.

Reusable-cable-tie

Velcro Cable Tie

Velcro cable tie or hook and loop cable tie is made of a self-attaching hook and loop material. It is reusable and adjustable to support frequent moves, adds, and changes of cables. Usually sold in rolls, velcro cable tie can be easily cut down to any length you want. No matter for factory devices or household appliance, velcro cable tie is very convenient to be used for cable management. It also has many other types with different shapes such as the T type velcro cable tie, the voltage type velcro cable tie and the buckle velcro cable tie.

Velcro-cable-tie

Conclusion

Cable management is especially essential for device installations where large amount of cables are needed. As a cost-effective tool, cable tie can be simply mounted to arrange the cable mess which enables higher performance of devices. The above options are some common types in the market. You should choose the right cable tie according to your actual application.

Jul 30

Have You Chosen the Right Fiber Patch Panel?

Fiber patch panel, namely fiber enclosure, is employed for better cable management and cable protection in data centers. With the help of fiber patch panels, it is more time-saving and easier for technicians to do the cabling work. Fiber patch panel terminates the fiber optic cables and provides access to the cables’ individual fibers for cross connection. In today’s market, there are various types of fiber patch panels. Choosing the right one for your network may seem a little complicated. This article will give several aspects that are important for selecting fiber patch panels.

Some Aspects for Consideration
Loaded vs. Unloaded

Loaded patch panel is pre-installed with adapter panels or cassettes while unloaded patch panel is empty with nothing inside. Typically, LC and MTP connectors are widely used in loaded patch panels. But these connectors in loaded panels are often permanently mounted, so if a port gets damaged it’s dead forever. Unloaded patch panel, on the contrary, is more flexible that can let you swap out defective ports at will. But extra assemblies are demanded to be purchased and installed by yourself.

loaded-unloaded-patch-panel

Patch Panel Rack Size

Fiber patch panel is usually measured by rack unit. A rack unit is used to describe the height of electronic equipment designed to mount in a 19-inch wide rack or a 23-inch wide rack. The height of rack-mounted equipment is frequently described as a number with U or RU. 1U refers to one rack unit, 2U refers to two rack units and so on. 2RU and 4RU are often used for high-density installations. So according to your application, the related rack size should also be adjusted.

patch-panel-rack-unit

Port Density

Port density is also an important part to be considered when purchasing fiber patch panels. As for normal patch panel, 1RU is able to carry 48 ports. If high-density patch panel is required, 1RU can support 96 ports. Moreover, 144 ports in 1RU is also available with ultra density patch panels. Since high-density has been frequently applied to the data centers, patch panels with higher port density becomes the future trend.

Migration to High-Density Patch Panels

Nowadays, people are paying more attention to the 40G and 100G high speed networks. MPO/MTP breakout patch panel may be an ideal solution for this high-density installation. Deploying high-density patch panels has many advantages. It simplifies the cabling deployment by running a short fiber patch cable from your SAN or network switch up to the fiber patch panel. Much space can also be saved in data centers by mounting more cables into a smaller space. Installation is easier since no tools are required to install cassettes in the patch panels, and push-pull tabs are used to ease the difficulty of cable connections in the patch panels. After all, high-density patch panel is a cost-effective solution that overcomes the cabling congestion in high bandwidth networking.

high-density-fiber-patch-panel

Summary

The well-organized and well-protected cables are the guarantee of a stable network. Fiber patch panel is definitely the perfect solution that meets all the requirements. Choosing the right fiber patch panel is also beneficial to your network. You may consider from the aspects of loaded or unloaded types, rack size, port density, etc. In addition, high-density fiber patch panel is welcome by the 40G/100G network. If you want to achieve better high bandwidth application, patch panels with high-density ports are recommended.

May 16

Introduction to Fiber Optic Adapter

A small equipment used for connecting optical fiber cables together is often called as fiber optic adapter or fiber optic coupler. Although they may shape differently, they have the same function. A fiber optic adapter allows fiber optic cables to be attached to each other singly or in a large network, permitting many devices to communicate at once. According to different shapes and structures, fiber optic adapters can be classified in several types, such as FC fiber optic adapter, SC fiber optic adapter, ST fiber optic adapter, LC fiber optic adapter and so on. And this article will particularly introduce these four kinds of fiber optic adapters.

fiber-optic-adapters

FC Fiber Optic Adapter

FC fiber optic adapter uses a metal sleeve to strengthen its outer structure and can be fastened by a turnbuckle. It also adopts the ceramic pins as its butt end. Therefore, FC fiber optic adapter is able to sustain a stable optical and mechanical performance for a long time. It can be divided into square type, oval type and round type in single-mode and multimode versions. FC fiber optic adapter is easy to operate but sensitive to dust, so it has been enhanced today by using spherical butt end without changing its external structure.

SC Fiber Optic Adapter

Covered with a rectangular shell, SC fiber optic adapter has the same configuration and size of the coupling pin cover as FC fiber optic adapter. From its structures, SC fiber optic adapter can be classified into simplex standard, duplex standard and shuttered standard. From its materials, metal and plastic are commonly used for SC fiber optic adapter. SC fiber optic adapter enables a high precision alignment with a low insertion, return loss and back reflection.

ST Fiber Optic Adapter

ST fiber optic adapter has a key snap-lock structure to ensure accuracy when connecting the cables together. The repeatability and durability of ST fiber optic adapter is improved by the metal key. With a precised ceramic or copper cover, ST fiber optic adapter can also keep a high optical and mechanical performance for a long time. It has two standards of simplex and duplex and uses the metal or plastic housing.

LC Fiber Optic Adapter

LC fiber optic adapter adopts the modular jack latch mechanism which is easy to operate. Using the smaller pins and sleeves, LC fiber optic adapter greatly increases the density of fiber optic connector. There are three types of LC fiber optic adapter in simplex, duplex and quad structures.

Applicable End Faces

Different fiber optic adapters supports different ends faces. PC (physical contact), UPC (ultra physical contact) and APC (angle physical contact) are the polish style used for fiber optic adapters. ST fiber optic adapter is only available with PC and UPC styles. But except ST, the rest three fiber optic adapters support all the polish styles. Moreover, the color of fiber optic adapters can be used to define different end faces of PC, UPC and APC. For example, as for SC and LC fiber optic adapters, there are cream, blue and green colors which correspond to PC, UPC and APC end faces.

Application

In order to help the signal transmission, fiber optic adapter is widely used for telecommunications system, cable TV network, LAN (local area network), WAN (wide area network), FTTH (fiber to the home), video transmission and instrument testing. It is no doubt that fiber optic adapter is of great help for network communications.

Conclusion

Fiber optic adapter provides convenience for fiber cable connections. FC, SC, ST, LC fiber optic adapters are parts of the adapter family and are widely adopted in practical use. Small device like fiber optic adapter really helps a lot for different applications in life, because it greatly improves the working efficiency.

Nov 25

Fiber Optic Connector Cleaning

With the deployment of 40G and 100G systems in the data center, reliable and efficient fiber installations are critical to the high performance network. Contaminated fiber optic connectors can often lead to degraded performance. Any contamination on the fiber connectors can cause failure of the component or failure of the whole system. So it’s important to keep fiber connectors clean.

Contamination Sources

There are two most important forms of contamination on fiber connectors and they are oils and dust. Oils from human hands will leave a noticeable defect easily seen with a fiberscope. The oil will trap dust against the fiber and bring scratches to the fiber connector. Inserting and removing a fiber can create a small static charge on the ends, which can attract airborne dust particles. Simply removing and re-inserting a fiber may also contaminate the end of the connector with a higher level of dust. Fiber caps, which are used to prevent fiber ends from being contaminated while not seated in a connector, will collect dust, dirt, oil and other contaminants to the fiber when used. Except oil and dust, there also other types of contamination, such as film residues condensed from vapors in the air, powdery coatings leaving after water or other solvents evaporating away. These contaminates tend to more difficult to remove and can also cause damage to equipment if not removed.

Contamination Inspection Tools

To inspect whether a fiber connector is contaminated, one should use fiberscope, clean and resealable container for the endcaps, bulkhead probe. A fiberscope is a customized microscope for inspecting optical fiber components. The fiberscope should provide at least 200x total magnification. The bulkhead probe is a handheld fiberscope used in order to inspect connectors in a bulkhead, backplane, or receptacle port. It should provide at least 200x total magnification displayed on a video monitor.

Contamination Inspection Steps

With contamination inspection tools, you should know how to inspect fiber connectors. The following introduces the inspection steps:

  • Make sure that the lasers are turned off before you begin the inspection. Be careful: Invisible laser radiation might be emitted from disconnected fibers or connectors. Do not stare into beams or view directly with optical instruments.
  • Remove the protective cap and store it in a clean resealable container. Verify the style of connector you inspect and put the appropriate inspection adapter or probe on your equipment.
  • Insert the fiber connector into the fiberscope adapter, and adjust the focus ring so that you see a clear endface image. Or, place the tip of the handheld probe into the bulkhead connector and adjust the focus.
  • On the video monitor, see if there is contamination present on the connector endface (See the following figure).

clean-connector-and-connectors-with-contamination

Connector Cleaning Tools

If there is contamination inspected on the fiber connector, then you need to clean it with proper tools. These tools can be divided into four types based on the cleaning method.

fiber-optic-cleaner-one-click

  • Wet cleaning: Optic cleaning with a solvent.
  • Non-Abrasive cleaning: Cleaning without abrasive material touching the fiber optic connector end face.
  • Abrasive cleaning: The popular lint free wipes, such as fiber optic mini foam swabs.
Connector Cleaning Steps

How to clean the fiber connector? Here is about the cleaning steps with abrasive cleaning tools.

  • Gently wipe endface with lint-free pad in one direction.
  • Using a can with compressed gas held upright and approximately 2 inches from the connector end, release a stream of gas on the connector endface for no more than 5 seconds.
  • Gently wipe the ferrule and the end-face surface of the connector with an alcohol pad. Making sure the pad makes full contact with the end-face surface. Wait 5 seconds for the surface to dry.

After finishing the cleaning steps, you should better inspect again to make sure there is definitely no contamination on the connector. Remember never touch the end face of the fiber connector and always install dust caps on unplugged fiber connectors. Do not re-use optic cleaning swabs or lens paper (lint free wipes).

Originally published at http://www.china-cable-suppliers.com/fiber-optic-connector-cleaning.html

Nov 04

How Does Fiber Connector Polish Type Influence Termination?

Connectors are used to mate two fibers to create a temporary joint and/or connect the fiber to a piece of network device. That’s one of fiber termination ways. The primary specification of connector termination is loss or the amount of light lost in the connection. Connector loss can be caused by a number of factors. This article will talk about the influence of fiber connector polish type on connector termination.

fiber-connector-termination

When the cone of light emerges from the connector, it will spill over the core of the receiving fiber and be lost. In addition, the end gaps can arouse the other problem called reflectance. The air gap in the joint between the fibers causes a reflection when the light encounters the change of refractive index from the glass fiber to the air in the gap. This reflection is called to as reflectance or optical return loss, which can be a problem in laser based systems.

Nowadays the fiber optic connectors have several different ferrule shapes or finishes, usually referred to as end finish or polish types. The connector end face preparation will determine the connectors’ return loss, also known as back reflection. Different end face causes different back reflection.

PC Polish

The Physical Contact (PC) polish results in a slightly curved connector surface, forcing the fiber ends of mating connector pairs into physical contact with each other. This eliminates the fiber-to-air interface and results in back reflections of -30 to -40 dB. The PC polish is the most popular connector end face, used in most applications.

UPC Polish

In the Ultra PC (UPC) polish, an extended polishing cycle enhances the surface quality of the connector, resulting in back reflections of -40 to -55 dB and < -55dB, respectively. These polish types are used in high-speed, digital fiber optic transmission systems.

APC Polish

Later, it was determined that polishing the connector ferrules to a convex end face would produce an even better connection. The convex ferrule guaranteed the fiber cores were in contact. Losses were under 0.3dB and reflectance -40 dB or better. This solution is to angle the end of the ferrule 8 degrees to create APC or angled PC connector. Then any reflected light is at an angle that is absorbed in the cladding of the fiber, resulting in reflectance  of >-60 dB.

FC-APC-Connector

As the introduction of fiber optic technology, numerous connector styles have been developed – probably over 100 designs. Each connector style is designed to offer better performance (less light loss and reflectance) and easier, faster and/or more inexpensive termination. For example, FC–“Ferrule Connector”. The following are three common types of FC connectors:

  • FC/PC–It’s the most common of the FC connectors. The tip is slightly curved to ensure only the fiber cores make connection during mating not the ferrules themselves. The return loss is 25-40 dB.
  • FC/UPC–The higher quality polish with rounder edges than FC/PC ensures better core mating. The return loss is 45-50 dB. It can mate with FC/PC connectors.
  • FC/APC–Common in most single mode applications where back reflection is critical to be minimized. Identified by the 8 degree of angle present in the ferrule tip along with a typical green colored strain relief boot. The return loss is 55-70 dB. It can only mate with other FC/APC fibers.

From this article, you can see the connector with APC polish type can provide the best connection. Later when you face many different types of fiber optic connectors, you may take polish type as one of the factors to make your decision.

Article source: http://www.china-cable-suppliers.com/how-does-fiber-connector-polish-type-influence-termination.html

Oct 14

Fiber Optic Cable and Connector Selection

Proper selection of fiber optic cables and connectors for specific uses is becoming more and more important as fiber optic systems become the transmission medium for communications and aircraft applications, and even antenna links. Choices must be made in selecting fiber optic cables and connectors for high-reliability applications. This article provides the knowledge for how to make appropriate selections of fiber optic cable and connector when designing a fiber optic system.

Fiber Optic Cable Selection

To select a fiber optic cable, you have to make choices of both the fiber selection and the cable construction selection.

Fiber Selection

The three major fiber parameters used in selecting the proper fiber for an application are bandwidth, attenuation and core diameter.

Bandwidth: The bandwidth at a specified wavelength represents the highest sinusoidal light modulation frequency that can be transmitted through a length of fiber with an optical signal power loss equal to 50 percent of the zero modulation frequency component. The bandwidth is expressed in megahertz over a kilometer length (MHz/km).

Attenuation: The optical attenuation denotes the amount of optical power lost due to absorption and scattering of optical radiation at a specified wavelength in a length of fiber. It is expressed as an attenuation in decibels of optical power per kilometer (dB/km). The attenuation is determined by launching a narrow spectral band of light into the full length of fiber and measuring the transmitted intensity.

Core Diameter: The fiber core is the central region of an optical fiber whose refractive index is higher than that of the fiber cladding. Various core diameters are available to permit the most efficient coupling of light from commercially available light sources, such as laser diodes. There are two basic fiber types, single-mode and multimode. Single-mode fiber has a core diameter of 8 to 10 microns and is normally used for long distance requirements and high-bandwidth applications. Multimode fiber has a core diameter of 50 or 62.5 microns and is usually used in buildings. The picture below shows single-mode and multimode fiber with different core diameters.

multimode and singlemode fiber

Cable Construction Selection

Another important consideration when specifying optical fiber cable is the cable construction. There are three main types of cable configurations: buffered fiber cable, simplex cable and multichannel cable.

Buffered Fiber Cable: There are two kinds of buffered fiber. The first is a loose buffer tube construction where the fiber is contained in a water-blocked polymer tube that has an inner diameter considerably larger than the fiber itself. The loose buffer tube construction offers lower cable attenuation from a given fiber, and a high level of isolation from external forces. Loose buffer cables are typically used in outdoor applications and can accommodate the changes in external conditions. The second is a tight buffer tube design. A thick buffer coating is placed directly on the fiber. The tight buffer construction permits smaller, lighter weight designs and generally yields a more flexible cable. A comparison of these two cable constructions is shown below.

Buffered Fiber

Simplex Cable: A simplex fiber optic cable has only one tight buffered optical fiber inside the cable jackets. Simplex fiber optic cables are typically categorized as interconnect cables and are used to make interconnections in front of the patch panel. They are designed for production termination where consistency and uniformity are vital for fast and efficient operation.

Multichannel Cable: Building multiple fibers into one cable creates a multichannel cable. This type of cable is usually built with either a central or external strength member and fiber bundled around or within the strength member. An external jacket is used to keep the cable together.

Fiber Optic Connector Selection

Connector is an integral component of the cabling system infrastructure, which keeps the information flowing from cable to cable or cable to device. There are various connector types, including LC, FC, ST, SC, MTRJ, MPO, MTP, DIN, E2000, MU, etc. To design a fiber optic system, optical connector selection is also a very important decision. When selecting an optical connector, you have to take polishing styles, fiber types and number of fibers all into consideration.

Polishing Styles: There are mainly three kinds of polishing styles, PC (physical contact), APC (angled physical contact), and UPC (ultra physical contact). PC, UPC and APC refer to how the ferrule of the fiber optic connectors is polished. PC connector is used in many applications. UPC connectors are often used in digital, CATV, and telephony systems. APC connectors are preferred for CATV and analog systems. The picture below shows these three kinds of polishing styles.

Polish Types

Fiber Types: Single-mode and multi-mode optical fiber are two commonly used fiber types. Accordingly, there are single-mode optical connector and multi-mode optical connector. ST and MTRJ are the popular connectors for multi-mode networks. LC connector and SC connector are widely used in single-mode systems. Single-mode fiber optic connectors can be with PC, or UPC or APC polish, while multi-mode fiber optic connectors only with PC or UPC polish.

Number of Fibers: Simplex connector means only one fiber is terminated in the connector. Simplex connectors include FC, ST, SC, LC, MU and SMA. Duplex connector means two fibers are terminated in the connector. Duplex connectors include SC, LC, MU and MTRJ. Multiple fiber connector means more than two fibers are terminated in the connector. These are usually ribbon fibers with fiber count of 4, 6, 8, 12 and 24. The most popular ribbon fiber connector is MT connector.

Conclusion

The key to designing a successful fiber optic system is understanding the performance and applications of different kinds of fibers, cable constructions and optical connectors, and then utilizing the appropriate components. Fiberstore provides a wide range of fiber optic cables and connectors. Fiber optic cables can be available in single-mode, multimode, or polarization maintaining, and they can meet the strength and flexibility required for today’s fiber interconnect applications.

Sep 16

MPO/MTP Connector – Multi-fiber Connector for High Port Density

In today’s transmission networks, small and multi-fiber connectors are replacing larger, older styles connectors for space saving. For example, the SC connector is gradually being replaced by its small version LC connector which allows more fiber ports per unit of rack space. To save space, multi-fiber connector is also a good solution, like MTP/MPO connectors. MTP/MPO connector allows more fiber ports per unit of rack space and also satisfies parallel optical interconnections’ needs for multi-fiber connection. This article is to introduce MPO/MTP connectors in details.

MPO Connector & MTP Connector

MT ferrule

MPO is short for the industry acronym—”multi-fiber push on”. The MPO connector is a multi-fiber connector which is most commonly defined by two documents: IEC-61754-7 (the commonly sited standard for MPO connectors internationally) and EIA/TIA-604-5 (also known as FOCIS 5, is the most common standard sited for in the US). MPO connectors are based on MT ferrule (showed in the picture on the right) which can provide quick and reliable high performance interconnections up to 4, 12, 24 or more and are usually used with ribbon fiber cables. The following picture shows diagram of MPO connectors, 12-fold (left) and 24-fold (right). The fibers for sending and receiving are colorcoded, red and green, respectively.

mpo-mtp-connector-fiber-count

MTP stands for “Multi-fiber Termination Push-on” connector and it is designed by USConec and built around the MT ferrule. MTP connector is a high performance MPO connector designated for better mechanical and optical performance and is in complete compliance with all MPO connector standards. Some main improvements of MTP connector are as following:

  • The MTP connector housing is removable;
  • The MTP connector offers ferrule float to improve mechanical performance;
  • The MTP connector uses tightly held tolerance stainless steel guide pin tips with an elliptical shape;
  • The MTP connector has a metal pin clamp with features for centering the push spring;
  • The MTP connector spring design maximizes ribbon clearance for twelve fiber and multifiber ribbon applications to prevent fiber damage;
  • The MTP connector is offered with four standard variations of strain relief boots to meet a wide array of applications.
Application of MPO/MTP Connector

As mentioned, MPO/MPT connectors are compatible ribbon fiber connectors. MPO/MTP connectors cannot be field terminated, thus MTP/MPO connector is usually assembled with fiber optic cable. MTP/MPO fiber optic cable is one of the most popular MTP/MPO fiber optic cable assemblies, which are now being widely used in data center to provide quick and reliable operation during signal transmission. MPO/MTP connectors can be found in the following applications:

  • Gigabit Ethernet
  • CATV and Multimedia
  • Active Device Interface
  • Premise installations
  • Optical Switch interframe connections
  • Interconnection for O/E modules
  • Telecommunication Networks
  • Industrial & Medical, etc.
MPO/MTP Connector Selection Guide

The structure of MPO/MTP connector is a little complicated. The picture below shows the components of a MPO connector.

MPO connector components

With the drive of market requests. Various types of MPO/MTP connectors are being provided. Some basic aspects should be considered during the selection of a MPO/MTP connector are as following:

mtp-mpo-connector-male-female

First is pin option. MPO/MTP connectors have male and female design (as showed in the picture on the left). Male connectors have two guide pins and female connectors do not. Alignment between mating ferrules of MPO/MTP connectors is accomplished using two precision guide pins that are pre-installed into the designated male connector. Second is fiber count: MPO/MTP connector could provide 4, 6, 8, 12, 24, 36, 64 or more interconnections, among which 12 and 24 are the most popular MPO/MTP connectors. In addition, like other fiber optic connectors, the selection of a MPO/MTP connectors should also consider fiber type and simplex or duplex design.

MPO/MTP Connector is a popular multi-fiber connector for high port density. It can offer ideal solution to set up high-performance data networks with the advantages of time saving and cost saving. As an important technology during migration to 40/100 Gigabit Ethernet, MTP/MPO connector is now being adopted by more and more data centers.

Sep 04

LC Connector Introduction

Fiber optic connectors are used to the mechanical and optical means for cross connecting fibers. Fiber optic connectors can also be used to join fiber cables to transmitters or receivers. There have been many types of connectors developed for fiber cable. Single mode networks have used FC or SC connectors in about the same proportion as ST and SC in multimode installations. But LC connector with smaller size and higher performance has become popular and the connector choice for optical transceivers for systems operating at gigabit speeds. The following text gives a detailed introduction of LC connector.

History of LC Connector

LC stands for Lucent Connector, as the LC connector was developed by Lucent Technologies as a response to the need by their primary customers, the telcos, for a small, low insertion loss connector. Then the LC design was standardized in EIA/TIA-604-10 and is offered by other manufacturers.

SC connector and LC connector

Advantages of LC Connector

There are solid reasons that the LC is the preferred connector for high-performance network. From the appearance, LC connect is like a mini size of SC connector. LC connector borrows split-sleeve construction and a cylindrical ferrule (usually ceramic) from SC connector. LC connector has a push-and-latch design providing pull-proof stability in system rack mounts. The picture on the right shows the appearance of SC connector and LC connector.

The ferrule size of LC connector is 1.25 mm which is half the size of SC connector ferrule—2.5 mm. LC connector is rated for 500 mating cycles and its typical insertion loss is 0.25 dB. An interesting feature of the LC is that, in some designs, the ferrule can be “tuned” or rotated with a special tool after it has been assembled. This offers a considerable performance advantage. The design and performance of LC connector address the need for high density and low insertion loss.

Application of LC Connector

LC connector can be found in many places for termination and connection, especially SFP transceivers for gigabit transmission. For example, the optic interfaces of Cisco SFP transceivers are all LC connectors. Some other applications are as following:

Simplex and duplex LC connectors

  • Telecommunication networks
  • Local area networks
  • Data processing networks
  • Cable television
  • Fiber-to-the-home
  • Premises distribution
LC Connector Selection Guide

To meet the needs of market, there are various types of LC connectors provided now. During the selection of LC connector, transmission media should be the first factor to consider. LC connector favors single mode fiber optic cable. But it can also be used with multimode fiber optic cable. Signals sometimes are transferred over simplex fiber optic cable and sometime duplex fiber optic cable. Thus, LC connector has both simplex and duplex design. The picture above shows an APC simplex LC connector on the left and a UPC duplex LC connector on the right. Some other factors like polishing style (APC or UPC), hole size and cable diameter should not be ignored. For more details about LC connectors, you can visit Fiberstore which provides various LC connectors with high performance and low price.

Aug 28

Introduction of PC, UPC and APC Connector

When we choosing a LC connectors, you might hear descriptions like LC UPC polished fiber optic connector, or LC APC fiber optic connector. Or when you are choosing a ST fiber optic patch cable, you can find the description like ST/PC multimode fiber optic patch cable. What do PC, UPC, APC stand for? The following text will give the explanations.

fiber optic connector ferrule

PC (physical contact), UPC (ultra physical contact) and APC (angle physical contact) are the polish style of ferrules inside the fiber optic connectors. Unlike copper cables with copper wire in the connectors as connection media, fiber optic connectors are with ceramic ferrules for connection. The picture on the left shows the ferrule in fiber optic connector. Different fiber optic connectors has different ferrule size and length. Also their polish style might be different.

To better understand the why we have PC, UPC and APC, let’s start with the original fiber optic connector which has a flat-surface and is also known as flat connector (showed in the following picture). When two flat fiber connectors are mated, an air gap naturally forms between the two surfaces from small imperfections in the flat surfaces. The back reflection in flat connectors is about -14 dB or roughly 4%. To solve this problem, the PC connectors came into being.

flat fiber connector

In the PC connector, the two fibers meet, as they do with the flat connector, but the end faces are polished to be slightly curved or spherical. This eliminates the air gap and forces the fibers into contact. The back reflection is about -40 dB. The following picture shows two end faces of PC connectors.

PC connector

UPC connector, usually has a blue-colored body, is an improvement to the PC connector with a better surface finish (as showed in the following picture) by an extended polishing. The back reflection of UPC connector is about -55 dB which lower than that of a standard PC connector. UPC connectors are often used in digital, CATV and telephony systems.UPC connector

PC and UPC connectors have reliable, low insertion losses. However, their back reflection depends on the surface finish of the fiber. The better the fiber gain structure, the lower the back reflection. If the PC and UPC connectors are continually mated and remated, back reflection will degrade. An APC connector won’t have such problem. Its back reflection does not degrade with repeated matings.

APC connector

APC connector usually has a green body with an end-face still curved but are angled at an industry-standard 8 degrees (showed in the above picture) which allows for even tight connections and smaller end-face radii. Thus any light that is redirected back towards the source is actually reflected out into the fiber cladding, again by virtue of the 8 degree angled end-face. APC ferrules offer return losses of -65dB. Some applications that are more sensitive to return loss than others that call for APC connectors, like FTTx and Radio Frequency (RF) applications. APC connectors are also commonly used in passive optical applications due to the fact that many of these systems also use RF signals to deliver video.

APC connector and UPC connector

PC, UPC or APC, which should be the choice of fiber optic connector? The answer is it depends. Choosing the appropriate connector for a fiber network depends on things such as, network design and function. Fiberstore offers a wide range of fiber optic connector as well as professional optical network solution. For more information you can visit Fiberstore.

Apr 23

How to Choose the Fittest Network Face Plates?

Although FTTx is now being widely applied, many places are not able to use optical fiber or FTTx. For example, CAT6 or CAT5e cables are still occupying a certain proportion comparing with fiber optic cables. In some places FTTx and CAT5e/CAT6 network cables are being operated at the same time. In the mentioned situations, network face plates should be taken into consideration during cabling.

Network Face Plate is usually a plastic plate with one or more ports, which allows copper network cables to run between rooms beneath floors and behind walls. It is important to choose appropriate network face plates or wall plates during cabling.

Before you install network face plates, you should know which ones satisfy your needs most. The face plates you choose should conform to the standard you have chosen for your overall system. A good choice of network face plates or wall plates will not only help to maintain the quality of your infrastructure, but also save valuable spaces and cost. How to select the appropriate network face plates and wall plates? The following will give you the answer.

First, you should make sure how many types of cables you need to run. Usually, people need multiple medium to maintain communication. For example, telephone, Internet and TV are always the “must-have” medium during home network cabling. They should be connected with different network face plates. You might need several network face plates separately with RJ45 port, RJ11 port and TV port. However, in many situations, those cables come into home from one location. Then, it could be really bothering to install these face plates one by one. In addition, it’s not space saving and the appearance is not nice. Luckily, you can find that many manufacturers are providing network face plates with multiple ports in one to meet your specific networking needs. For example, except the network face plate with one port, Fiberstore also provides many other network face plates like the followings:

  • Face plate with one or more RJ45 port(s) and one or more TV port(s)
  • Face plate with a RJ45 port, RJ11 port and a TV port
  • Face plate with a RJ45 port, a RJ11 port, as well as an electrical socket and switch.

wall face plate with two RJ45 ports and two TV portsone RJ45 port, one RJ11 port, one electrical socket and one switch in a wall face plate

The above picture on the left shows a network face plate with two RJ45 ports and two TV ports. The above picture on the right shows a network face plate with one RJ45 port, one RJ11 port, one electrical socket and one switch.

Fiberstore could even provide RJ45 wall plate with a RJ45 port and a SC port for the situations in which both copper cable and fiber optic cable are being used.

RJ45-SC wall plate

The above picture shows a RJ45 wall jack with a RJ45 port and a SC port.

The size of the network face plate is another thing should be considered during cabling. There are generally 3 types of standard network face plates. They are known as 86 type, 118 type and 120 type network face plates. 86 type network face plate is square, with a size of 86*86mm, with one to three ports. 118 type network face plate is a rectangle network face plate generally with a 118*72mm size or other sizes. 120 type network face plate usually has a size of 120*120mm, 120*60mm or other accordingly.

One more thing cannot be ignored during network cabling is the cable type. The most commonly used copper network cables are CAT5e or CAT6. It is essential to make sure whether the network face plates are suitable for the cables you chose.

By taking the mentioned aspects into consideration, you are sure to find the right network face plates for your needs.

Fiberstore supplies a variety of network face plates, such as AMP Face Plate BS Shuttered, 86 type network face plates, 118 type network face plates. These face plates are available with 1 port, 2 ports, 4 ports, etc. Our high quality network face plates are compliant with international standards with low price and worldwide delivery. They can help you save time & money for your business or project.

Apr 13

Introduction of Fiber Optic Wall Plate

When talking about fiber optic cabling system, the related products that come to our mind firstly are usually fiber optic cables, fiber optic transceivers, connectors or fiber optic transmission products. However, there are still many other components whose importance should not be ignored. Fiber optic wall plate, or outlet, is one of these components, and is also one of the most visible components in a fiber optic cabling system. This text will introduce you this component and offer you the Fiberstore‘s fiber optic wall plate solution.

Fiber optic wall plate is a flat plastic or metal plate that allows connection to fiber cable carrying optical signals. It serves as a transition point between the fiber optic cable and equipment. Fiber optic wall plates are usually mounted in or on walls, but some of them can also be mounted in floors and ceilings. Fiber optic wall plate includes one or more ports, and each port is available with an adapter.

Applications of Fiber Optic Wall Plate

Fiber optic wall plates are designed to bring fiber to the desk and widely used in multi-floor and high building. It can be found in:

  • FTTH access
  • Telecommunication
  • CATV
  • Data Communication Networks etc.
Types of Fiber Optic Wall Plate

Fiber optic wall plates come in many different types according to their adapter type, port number and faceplate interface.

According to the faceplate interface of the plates, there are bevel fiber optic wall plates and hybrid fiber optic wall plates.

Fiber optic wall plates can contain one or more adapters. The number of ports a plate can have is based on the size of the plate. Here listed some of the fiber optic wall plates:

  • Single port fiber optic wall plates
  • 2-port fiber optic wall plates
  • 3-port fiber optic wall plates
  • 4-port fiber optic wall plates
  • 6-port fiber optic wall plates
  • 8-port fiber optic wall plates
  • 12-port fiber optic wall plates

The following picture shows a single port ST fiber optic wall plate outlet.

wall plate

To satisfy different demands during cabling, sundry kinds of adapters could be installed on fiber optic wall plates. And these adapters could be the same ones or different. If classified by the adapters, the types of fiber optic wall plates will be various. Parts of the fiber optic wall plates classified by the adapters are listed as following:

  • FC fiber optic wall plates outlets
  • SC fiber optic wall plates outlets
  • ST fiber optic wall plates outlets
  • LC fiber optic wall plates outlets
  • SC-ST fiber optic wall plates outlets
  • RJ45-SC fiber optic wall plates outlets
  • SC-ST-LC fiber optic wall plates outlets
  • FC-SC-ST-LC fiber optic wall plates outlets

wall plate pic 2

The above picture shows a 2-port FC bevel fiber optic wall plate outlet. The picture below shows a 4-port SC/ST/FC/LC hybrid fiber optic wall plate outlet.

wall plate pic 3

Fiberstore’s Fiber Optic Wall Plate Solution

Fiberstore supplies different types of fiber optic wall plates, including bevel fiber wall plates with 45° adapter plug-in/out angle and hybrid fiber wall plates/outlets. These wall plates are available with LC, SC, ST, FC adapters (or hybrid with RJ45 port) and up to 4 ports. All the wall plates are with high quality and secure to any surface, drywall, baseboard, and even modular furniture.

Apr 10

Fiber Splice Tray & Wall Mount Network Cabinet–For Better Cabling

Cabling is not some easy thing. Many problems might come out while cabling. Sometimes the fiber optic cable is not long enough. Sometimes there are too many fiber optic cables that need great efforts to ensure the management of them. The protection and maintenance of the fiber optic cable are also essential. These are just some of the most common problems that people meet during cabling. In this article, two common and useful products will be introduced to help you solve the most common problems while cabling. They are fiber splice tray and wall mount network cabinet.

Fiber Splice Tray
Fiber splice tray is a kind of optical distribution frame. Generally, fiber splice tray is a container used to organize and protect fibers and spliced fibers. It is designed to provide space for the connection of fibers and spliced fibers.
Different fiber optic cables can be melted connected directly via the fiber splice tray. In addition, fiber optic cable can be connected with pigtail via the tray, and via the pigtail it can connect out to their fiber optic equipment. With the help of fiber splice trays, the problem that the fiber optic cable is not long enough can be solved. Fiber splice tray is made of engineering plastics and it features as flame retardant, high strength and aging resistance. Thus it can protect the fiber and spliced fibers very well. In addition, as the fiber splice tray provides space to hold the melted connected fibers and spliced fibers, it can help to manage the fiber optic cables to some degree. This function can be seen from the picture of a splice tray below:
OLYMPUS DIGITAL CAMERA
Fiber splice tray is one of the most common components being used during cabling. It can offer various of unique and flexible splice and storage possibilities.

Wall Mount Network Cabinet
Wall mount network cabinet is one of the most commonly used distribution cabinets. It provides a flexible fiber management system for transitioning outside plant cable to inside cable and connector assemblies and can be installed on the wall.
Wall mount network cabinet has great advantages in fiber optic cable management and protection. The wall mount network cabinet is usually layered structure, which helps a lot while organizing equipment and cabling in limited space. Moreover, the maintenance of fiber optic cables connected with wall mount network cabinet is very convenient and efficient. The cabinet generally contains power supply and fan, which can help the fiber optic cables work well and work longer. Various sizes and types of wall mount network cabinets are provided. Factories install different adapters in the cabinet to satisfy the needs of the markets. Costum-made cabinet is also very popular.

wall mount cabinet 2 wall mount cabinet
With the help of wall mount network cabinets, cabling work will be much more easier and systematic. The cabinet provides a safe place for the fiber optic cables connection in limited space. It is now widely used in the cabling of various areas.

The choice of appropriate components during cabling does not only simplify the work, but also helps a lot in cost saving, space savings, products operation and maintenance. Fiberstore Inc. designs, manufactures and sells a comprehensive line of high performance, highly reliable fiber optic communication systems and modules for metropolitan area, local area and storage area networks. Fiberstore can provide different sizes of wall mount network cabinets and various types of fiber splice trays which can contain 4 fibers, 6 fibers, 12 fibers, 16 fibers, 24 fibers, 32 fibers and so on.

Mar 14

Fiber Optic Connector: An Important Part of Fiber Optic Termination

Fiber optics are used for a variety of applications in the photonics industry. Fiber optics are typically connectorized for convenience of mating and coupling. These connectors come in many configurations and styles. A fiber optic connector that was lower loss, lower cost, easier to terminate or solved some other perceived problem is urgently needed to the industry. As a result, about 100 fiber optic connectors have been introduced to the marketplace, but only a few represent the majority of the market. Today, Fiberstore’s Blog are going to show you these commonly used fiber optic connectors.

fiber optic connector

Fiber Optic Connector Types
Commonly used fiber optic connector types include SC, FC, LC, ST, MU, E2000, MTRJ, SMA , DIN as well as MTP & MPO etc. They are widely used in the termination of fiber optic cables, such as fiber optic pigtail, fiber optic patch cables and so on.

LC connector LC Connector (Lucent Connector) — Ferrule diameter = 1.25mm. LC connectors are licensed by Lucent and incorporate a push-and-latch design providing pull-proof stability in system rack mounts. LC connectors are available in single mode and multimode. Externally LC connectors resemble a standard RJ45 telephone jack. Internally they resemble a miniature version of the SC connector. This type of connectors are commonly used in connecting SFP Transceiver Module in Router/Switch. For example, the optic interfaces of Cisco’s SFP transceivers are all LC connectors.
SC connector SC Connector (Subscriber Connector) — Ferrule diameter = 2.5mm. The SC connector is becoming increasingly popular in single-mode fiber optic telecom and analog CATV, field deployed links. But the most commonly used field is to connect GBIC (100Base-FX) in router/switch. The high-precision, ceramic ferrule construction is optimal for aligning single-mode optical fibers. The connectors’ outer square profile combined with its push-pull coupling mechanism, allow for greater connector packaging density in instruments and patch panels. The keyed outer body prevents rotational sensitivity and fiber endface damage. Multimode versions of this connector are also available. The typical insertion loss of the SC connector is around 0.3 dB.
ST connector ST Connector (Straight Tip) — Ferrule diameter = 2.5mm. ST connector’s high-precision, ceramic ferrule allows its use with both multimode and single-mode fibers. The bayonet style, keyed coupling mechanism featuring push and turn locking of the connector, prevents over tightening and damaging of the fiber end. The insertion loss of the ST connector is less than 0.5 dB, with typical values of 0.3 dB being routinely achieved. ST connector is used extensively both in the field and in indoor fiber optic LAN applications, eg. ODF (optical distribution frame). In addition, ST connector is also used to connect GBIC transceiver, usually for 100Base-F.
FC connector FC Connector (Ferrule Connector) — Ferrule diameter = 2.5mm. The FC has become the connector of choice for single-mode fibers and is mainly used in fiber-optic instruments, SM fiber optic components, and in highspeed fiber optic communication links. This high-precision, ceramic ferrule connector is equipped with an anti-rotation key, reducing fiber endface damage and rotational alignment sensitivity of the fiber. The key is also used for repeatable alignment of fibers in the optimal, minimal-loss position. Multimode versions of this connector are also available. The typical insertion loss of the FC connector is around 0.3 dB.
MU connector MU Connector (Miniature Unit) — Ferrule diameter = 1.25mm. MU is a small form factor SC. It has the same push/pull style, but can fit 2 channels in the same Footprint of a single SC. MU was developed by NTT. It is a popular connector type in Japan. Applications include high-speed data communications, voice networks, telecommunications, and dense wavelength division multiplexing (DWDM). MU connectors are also used in multiple optical connections and as a self-retentive mechanism in backplane applications.
MTRJ connector MTRJ Connector (Mechanical Transfer Registered Jack) — Ferrule diameter = 2.45×4.4 mm. MT-RJ is a duplex connector with both fibers in a single polymer ferrule. It uses pins for alignment and has male and female versions. Multimode only, field terminated only by prepolished/splice method.
E2000 connector E2000 Connector — Ferrule diameter = 2.5mm. E2000 connector is a plastic push-pull connector developed by Diamond. The E2000 was developed as an improvement on the SC connector design by having: a latch that retains the connector, a dust cap always in place, and a smaller size. The built in dust cap always stays on the connector protecting the ferrule and blocking harmful laser light when the connector is disconnected. E2000 is available for Singlemode and Multimode applications.
sma SMA Connector (Sub Miniature A) — Ferrule diameter = 3.14mm. Due to its stainless steel structure and lowprecision threaded fiber locking mechanism, this connector is used mainly in applications requiring the coupling of high-power laser beams into large-core multimode fibers. Typical applications include laser beam delivery systems in medical, bio-medical, and industrial applications. The typical insertion loss of an SMA connector is greater than 1 dB.
DIN connector DIN Connector — Ferrule diameter = 2.5mm. DIN connector is a metal screw on connector which is developed by Siemens. Deutsch Telecom mainly uses it. This is a good connector to use where the ruggedness of a metal screw on connector is required but
where there is not enough space for a FC Connector.
mtp&mpo connector MTP and MPO Connector — MTP and MPO are compatible ribbon fiber connectors based on MT ferrule which allow quick and reliable connections for up to 12 fibers. They are intended for installations that require many fiber connections. Up to 12 fibers in a ribbon are stripped to 125um cladding and inserted into 250um spaced parallel grooves. The ferrule also includes two 0.7mm diameter holes, running parallel to the fibers on the outer side of the ferrule. These two holes hold precision metal guide pins which align the fibers with tight tolerances. MTP and MPO connectors feature male and female connector design. Male connectors have two guide pins and female connectors do not. Both connector types need an adapter to mate a pair of male and female connectors. Because MTP and MPO connectors are trying to align so many fibers at once, their coupling loss are typically bigger than single fiber connectors.

 

History of Different Connector Types
The ST connector is the oldest design of the connectors still in common use. It was the first connector to use a 2.5mm ferrule. The FC and DIN connectors improved on the ST connector by: isolating cable tension from the ferrule, keying the location of the ferrule for angle polishing, and threading onto the adapter for a more positive connection. The SC connector was then developed to eliminate having to screw and unscrew the connector every time and to reduce the cost by molding instead of machining the connector. A big advantage of this push/pull connector over a FC connector is that less room is required between connectors on patch panels. The E-2000 was developed as an improvement on the SC connector design by having: a latch that retains the connector, a dust cap always in place, and a smaller size. As patch panel densities increased the LC and MU connectors were developed to reduce the space required for connectors on patch panels. Both of these connectors use a 1.25mm ferrule. The MT-RJ connector was then developed to put transmit and receive fibers into one connector. This was the first connector to use the MT ferrule design as opposed to a 2.5mm or 1.25mm diameter ferrule. The MTP connector was then developed to increase fiber density even more. The MTP currently has 12 fibers in its MT ferrule however a 24-fiber version is under development.

There are many more influences that lead to the development of these different commonly used connector types. This is why all of the different connector types exist. In fact, there are not only these connector types. A multitude of specialty connectors are launched to the market for different application.

Connector Endface Preparation
Once the optical fiber is terminated with a particular connector, the connector endface preparation will determine what the connector return loss, also known as back reflection, will be. The back reflection is the ratio between the light propagating through the connector in the forward direction and the light reflected back into the light source by the connector surface. Minimizing back reflection is of great importance in high-speed and analog fiber optic links, utilizing narrow line width sources such as DFB lasers, which are prone to mode hopping and fluctuations in their output.

polishing type

Flat Polish — a flat polish of the connector surface will result in a back reflection of about -16 dB (4%).
PC Polish — the Physical Contact (PC) polish results in a slightly curved connector surface, forcing the fiber ends of mating connector pairs into physical contact with each other. This eliminates the fiber-to-air interface, there by resulting in back reflections of -30 to -40 dB. The PC polish is the most popular connector endface preparation, used in most applications.
UPC/SPC Polish — in the Super PC (SPC) and Ultra PC (UPC) polish, an extended polishing cycle enhances the surface quality of the connector, resulting in back reflections of -40 to -55 dB and < -55dB, respectively. These polish types are used in high-speed, digital fiber optic transmission systems.
APC Polish — the Angled PC (APC) polish, adds an 8 degree angle to the connector endface. Back reflections of <-60 dB can routinely be accomplished with this polish.

Article Source: http://www.fs.com/blog/fiber-optic-connector-an-important-part-of-fiber-optic-termination.html