7 Factors to Consider before Selecting An OTDR

An OTDR (Optical Time Domain Reflectometer) is a fiber optic tester for the characterization of optical networks that support telecommunications. The purpose of an OTDR is to detect, locate, and measure elements at any location on a fiber optic link. An OTDR needs access to only one end of the link and acts like a one -dimensional radar system. By providing pictorial trace signature of the fibers under test, it’s possible to get a graphical representation of the entire fiber optic link.

Fiberstore2405 OTDR

An OTDR can be used to measure optical distance including locations of the elements like splices, connectors, splitters, multiplexers and faults, as well as end of fiber. Loss and Optical Return Loss (ORL)/Reflectance, such as loss of splices and connectors, ORL of link or section, reflectance of connectors and total fiber attenuation can also be tested by OTDRs.

Not all OTDR are made the same. There are various kinds of OTDR models available, addressing different test and measurement needs. The choosing of an OTDR is based on applications. By thinking of the following questions, you can roughly know what kind of OTDR you need.

  • What kind of networks will you be testing? LAN, metro, long haul?
  • What fiber type will you be testing? Multimode or single-mode?
  • What is the maximum distance you might have to test? 700 m, 25 km, 150 km?
  • What kind of measurements will you perform? Construction(acceptance testing), troubleshooting, in-service?


Fiberstore offers you 7 factors to help you figure out which OTDR best fits your applications.

  • Size and Weight: important if you have to climb up a cell tower or work inside a building.
  • Display Size: 5″ should be the minimum requirement for a display size; OTDRs with smaller displays cost less but make OTDR trace analysis more difficult.
  • Battery Life: an OTDR should be usable for a day in the field; 8 hours should be the minimum.
  • Trace or Results Storage: 128 MB should be the minimum internal memory with options for external storage such as external USB memory sticks.
  • Bluetooth and/or WiFi Wireless Technology: wireless connectivity enables easily exporting test results to PCs/laptops/tablets.
  • Modularity/Upgradability: a modular/upgradable platform will more easily match the evolution of your test needs; this may be more costly at the time of purchase but is less expensive in the long term.
  • Post-Processing Software Availability: although it is possible to edit and document your fibers from the test instrument, it is much easier and more convenient to analyze and document test results using post-processing software.

Before selecting an OTDR, consider the applications that the instrument will be used for and check the OTDR’s specifications to ensure that they are suited to your applications.

Fiberstore OTDR Solution

Fiberstore OTDRs are available with a variety of fiber types and wavelengths, including single mode fiber, multimode fiber, 1310nm, 1550 nm, 1625 nm, etc. It also supplies OTDRs of famous brands, such as JDSU MTS series, EXFO, YOKOGAWA AQ series and so on. You can find the OTDR best fit your applications in Fiberstore.